Indetermsoft-Set-Based D* Extra Lite Framework for Resource Provisioning in Cloud Computing

Salvato in:
Dettagli Bibliografici
Pubblicato in:Algorithms vol. 17, no. 11 (2024), p. 479
Autore principale: Krishnamurthy, Bhargavi
Altri autori: Shiva, Sajjan G
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3132825734
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a17110479  |2 doi 
035 |a 3132825734 
045 2 |b d20240101  |b d20241231 
084 |a 231333  |2 nlm 
100 1 |a Krishnamurthy, Bhargavi  |u Department of CSE, Siddaganga Institute of Technology, Tumakuru 572103, Karnataka, India 
245 1 |a Indetermsoft-Set-Based D* Extra Lite Framework for Resource Provisioning in Cloud Computing 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Cloud computing is an immensely complex, huge-scale, and highly diverse computing platform that allows the deployment of highly resource-constrained scientific and personal applications. Resource provisioning in cloud computing is difficult because of the uncertainty associated with it in terms of dynamic elasticity, rapid performance change, large-scale virtualization, loosely coupled applications, the elastic escalation of user demands, etc. Hence, there is a need to develop an intelligent framework that allows effective resource provisioning under uncertainties. The Indetermsoft set is a promising mathematical model that is an extension of the traditional soft set that is designed to handle uncertain forms of data. The D* extra lite algorithm is a dynamic heuristic algorithm that makes use of the history of knowledge from past search experience to arrive at decisions. In this paper, the D* extra lite algorithm is enabled with the Indetermsoft set to perform proficient resource provisioning under uncertainty. The experimental results show that the performance of the proposed algorithm is found to be promising in performance metrics such as power consumption, resource utilization, total execution time, and learning rate. The expected value analysis also validated the experimental results obtained. 
653 |a Scheduling 
653 |a Computer centers 
653 |a Performance measurement 
653 |a Datasets 
653 |a Mathematical models 
653 |a Cloud computing 
653 |a Decision making 
653 |a Provisioning 
653 |a Resource allocation 
653 |a Algorithms 
653 |a Quality of service 
653 |a Resource utilization 
653 |a Machine learning 
653 |a Workloads 
653 |a Uncertainty 
653 |a Expected values 
653 |a Energy consumption 
653 |a Heuristic methods 
653 |a Resource management 
700 1 |a Shiva, Sajjan G  |u Department of CS, University of Memphis, Memphis, TN 38152, USA 
773 0 |t Algorithms  |g vol. 17, no. 11 (2024), p. 479 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3132825734/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3132825734/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3132825734/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch