Adaptive Multi-Scale Bayesian Framework for MFL Inspection of Steel Wire Ropes

Сохранить в:
Библиографические подробности
Опубликовано в::Machines vol. 12, no. 11 (2024), p. 801
Главный автор: Li, Xiaoping
Другие авторы: Sun, Yujie, Liu, Xinyue, Zhang, Shaoxuan
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3133147127
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines12110801  |2 doi 
035 |a 3133147127 
045 2 |b d20240101  |b d20241231 
084 |a 231531  |2 nlm 
100 1 |a Li, Xiaoping 
245 1 |a Adaptive Multi-Scale Bayesian Framework for MFL Inspection of Steel Wire Ropes 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Magnetic flux leakage (MFL) technology is widely used in steel wire rope (SWR) inspection for non-destructive testing. However, accurate defect characterization requires advanced signal processing techniques to handle complex noise conditions and varying defect types. This paper presents a novel adaptive multi-scale Bayesian framework for MFL signal analysis in SWR inspection. Our approach integrates discrete wavelet transform with adaptive thresholding and multi-scale feature fusion, enabling simultaneous detection of minute defects and large-area corrosion. To validate our method, we implemented a four-channel MFL detection system and conducted extensive experiments on both simulated and real-world datasets. Compared with state-of-the-art methods, including long short-term memory (LSTM), attention mechanisms, and isolation forests, our approach demonstrated significant improvements in precision, recall, and F1 score across various tolerance levels. The proposed method showed superior detection performance, with an average precision of 91%, recall of 89%, and an F1 score of 0.90 in high-noise conditions, surpassing existing techniques. Notably, our method showed superior performance in high-noise environments, reducing false positive rates while maintaining high detection sensitivity. While computational complexity in real-time processing remains a challenge, this study provides a robust solution for non-destructive testing of SWR, potentially improving inspection efficiency and defect localization accuracy. Future work will focus on optimizing algorithmic efficiency and exploring transfer learning techniques for enhanced adaptability across different non-destructive testing (NDT) domains. This research not only advances signal processing and anomaly detection technology but also contributes to enhancing safety and maintenance efficiency in critical infrastructure. 
653 |a Magnetic flux 
653 |a Venus 
653 |a Signal analysis 
653 |a Wire rope 
653 |a Nondestructive testing 
653 |a Wavelet transforms 
653 |a Defects 
653 |a Adaptability 
653 |a Art techniques 
653 |a Magnetic fields 
653 |a Signal processing 
653 |a Discrete Wavelet Transform 
653 |a Efficiency 
653 |a Data analysis 
653 |a Digital signal processors 
653 |a Energy consumption 
653 |a Wavelet analysis 
653 |a Corrosion 
653 |a Recall 
653 |a Machine learning 
653 |a Steel wire 
653 |a Inspection 
653 |a Bayesian analysis 
653 |a Fourier transforms 
653 |a Experiments 
653 |a Noise sensitivity 
653 |a Sensors 
653 |a Working conditions 
653 |a Magnetic flux leakage testing 
653 |a Design 
653 |a Methods 
653 |a Complexity 
653 |a Anomalies 
653 |a Real time 
653 |a Critical infrastructure 
700 1 |a Sun, Yujie 
700 1 |a Liu, Xinyue 
700 1 |a Zhang, Shaoxuan 
773 0 |t Machines  |g vol. 12, no. 11 (2024), p. 801 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3133147127/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3133147127/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3133147127/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch