Advanced Monitoring and Real-Time State of Temperature Prediction in Lithium-Ion Cells Under Abusive Discharge Conditions Using Data-Driven Modelling

Guardado en:
Detalles Bibliográficos
Publicado en:World Electric Vehicle Journal vol. 15, no. 11 (2024), p. 509
Autor principal: Rawat, Sandeep
Otros Autores: Saini, Devender Kumar, Choudhury, Sushabhan, Yadav, Monika
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3133398196
003 UK-CbPIL
022 |a 2032-6653 
024 7 |a 10.3390/wevj15110509  |2 doi 
035 |a 3133398196 
045 2 |b d20240101  |b d20241231 
100 1 |a Rawat, Sandeep  |u Electrical Cluster, School of Engineering, UPES, Dehradun 682017, India; <email>sandeep.rawat@ddn.upes.ac.in</email> 
245 1 |a Advanced Monitoring and Real-Time State of Temperature Prediction in Lithium-Ion Cells Under Abusive Discharge Conditions Using Data-Driven Modelling 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Accurately predicting lithium-ion batteries’ state of temperature (SOT) is crucial for effective battery safety and health management. This study introduces a novel approach to SOT prediction based on voltage and temperature profiles during the abusive discharging process, aiming for enhanced prediction accuracy and evaluating the safety range. The duration of equal voltage discharge and temperature variation during discharge are considered temperature indicators. Linear regression and R2 analyses are employed to assess the relationship and variance over different discharge–charge cycles of varied duration between the complete life cycle and its temperature variance. In this study, a decision tree (DT) and an artificial neural network (ANN) are employed to estimate the SOT of a Li-ion battery. The effectiveness and accuracy of the proposed methods are validated using ageing data from eVTOL charge–discharge cycles through numerical simulations. The results demonstrate that for the short cruise range of 600 s, the DT algorithm with an R2 regression value of 6.17% demonstrates better performance than ANN, whereas for the bigger cruise range of 1000 s, the ANN model with an R2 regression value of 5.06 percent was better suited than DT. It is concluded that both DT and ANN outperform other methods in predicting the SOT of lithium-ion batteries. 
653 |a Accuracy 
653 |a Heat transfer 
653 |a Lithium-ion batteries 
653 |a Discharge 
653 |a Electrolytes 
653 |a Cooling 
653 |a Electric cells 
653 |a Electrodes 
653 |a Electric potential 
653 |a Voltage 
653 |a Temperature 
653 |a Regression models 
653 |a Artificial neural networks 
653 |a Sensors 
653 |a Effectiveness 
653 |a Temperature profiles 
653 |a Algorithms 
653 |a Batteries 
653 |a Predictions 
653 |a Lithium 
653 |a Battery cycles 
653 |a Decision trees 
653 |a Safety management 
700 1 |a Saini, Devender Kumar  |u Electrical Cluster, School of Engineering, UPES, Dehradun 682017, India; <email>sandeep.rawat@ddn.upes.ac.in</email> 
700 1 |a Choudhury, Sushabhan  |u School of Computer Sciences, UPES, Dehradun 682017, India; <email>schoudhury@ddn.upes.ac.in</email> 
700 1 |a Yadav, Monika  |u Electrical Cluster, School of Engineering, UPES, Dehradun 682017, India; <email>sandeep.rawat@ddn.upes.ac.in</email> 
773 0 |t World Electric Vehicle Journal  |g vol. 15, no. 11 (2024), p. 509 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3133398196/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3133398196/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3133398196/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch