GraphSense: a self-aware dynamic graph learning networks for graph data over internet

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Intelligence vol. 55, no. 1 (Jan 2025), p. 41
Autor principal: Li, Zhi-Yuan
Altres autors: Zhou, Ying-Yi, He, En-Han
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3133855119
003 UK-CbPIL
022 |a 0924-669X 
022 |a 1573-7497 
024 7 |a 10.1007/s10489-024-05882-4  |2 doi 
035 |a 3133855119 
045 2 |b d20250101  |b d20250131 
084 |a 137335  |2 nlm 
100 1 |a Li, Zhi-Yuan  |u Jiangsu University, School of Computer Science and Communication Engineering, Zhenjiang, China (GRID:grid.440785.a) (ISNI:0000 0001 0743 511X); Jiangsu Industrial Network Security Technology Key Laboratory, Zhenjiang, China (GRID:grid.440785.a); Jiangsu Provincial Engineering Research Center for Ubiquitous Data Intelligence Sensing and Analytics Applications, Zhenjiang, China (GRID:grid.440785.a) 
245 1 |a GraphSense: a self-aware dynamic graph learning networks for graph data over internet 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Dynamic graph data learning is an important data analysis technique. In the age of big data, the volume of data produced daily is immense, the data types are varied, the value density is low, and the data continues to accumulate over time. These characteristics make data processing more challenging. In particular, unstructured data, unlike structured data, does not have a fixed format, and its volume is large and variable, which presents a significant challenge to traditional data processing techniques. Nowadays, researchers have been employing graph neural network models to analyze unstructured data. However, real-world graph structures are dynamic and time-varying, and the static graph neural network cannot effectively learn graph node embeddings and network structures. To address the challenges mentioned above, we propose a self-aware dynamic graph network structure learning model, called GraphSense. The algorithm consists of two modules: self-sensing neighborhood aggregation algorithm and dynamic graph structure learning algorithm based on RNN. GraphSense can make each node discover more valuable neighbors through the self-aware neighborhood aggregation algorithm in each epoch. The algorithm employs gated recurrent unit to dynamically aggregate the information of node neighbors to learn the high-order information. Next, in order to capture the temporal properties of graph structures, we employ dynamic graph structure learning algorithm based on RNN to replicate the time evolution process of dynamic graphs. Finally, we evaluate the performance of GraphSense on four publicly available datasets by two specific tasks(edge and node classification). The experimental results show that the proposed GraphSense model outperforms the baseline model by 2.0% to 25.0% on the Elliptic dataset, 2.5% to 27.0% on the Bitcoin-alpha dataset, 3.0% to 31.0% on the Bitcoin-otc dataset, and 0.9% to 26.0% on the Reddit dataset in terms of F1 scores. The results suggest that our model is effective in learning from dynamic graph data. 
653 |a Data analysis 
653 |a Datasets 
653 |a Data processing 
653 |a Big Data 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Nodes 
653 |a Recurrent neural networks 
653 |a Structured data 
653 |a Digital currencies 
653 |a Self awareness 
653 |a Unstructured data 
653 |a Algorithms 
653 |a Machine learning 
653 |a Evolutionary algorithms 
700 1 |a Zhou, Ying-Yi  |u Jiangsu University, School of Computer Science and Communication Engineering, Zhenjiang, China (GRID:grid.440785.a) (ISNI:0000 0001 0743 511X) 
700 1 |a He, En-Han  |u Jiangsu University, School of Computer Science and Communication Engineering, Zhenjiang, China (GRID:grid.440785.a) (ISNI:0000 0001 0743 511X) 
773 0 |t Applied Intelligence  |g vol. 55, no. 1 (Jan 2025), p. 41 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3133855119/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3133855119/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch