A spatial interpolation based on neighbor cluster adaptive model with spatial color block clustering algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Intelligence vol. 55, no. 1 (Jan 2025), p. 53
Autor principal: Zhu, Liang
Otros Autores: Chen, Feng, Song, Xin
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3134195890
003 UK-CbPIL
022 |a 0924-669X 
022 |a 1573-7497 
024 7 |a 10.1007/s10489-024-05913-0  |2 doi 
035 |a 3134195890 
045 2 |b d20250101  |b d20250131 
084 |a 137335  |2 nlm 
100 1 |a Zhu, Liang  |u Hebei University, School of Cyber Security and Computer Science, Baoding, China (GRID:grid.256885.4) (ISNI:0000 0004 1791 4722) 
245 1 |a A spatial interpolation based on neighbor cluster adaptive model with spatial color block clustering algorithm 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Accurate soil nutrient data are crucial for precise fertilizer recommendations in intelligent agriculture. However, the process of soil testing, which includes collecting samples, determining available nutrients and interpreting results, is expensive. To address this challenge, spatial interpolation methods are commonly used to predict soil fertility. Yet, existing techniques like IDW (Inverse Distance Weighting) and OK (Ordinary Kriging) face limitations, making it difficult to achieve highly accurate estimates. Therefore, this paper introduces NCAMS (Neighbor Cluster Adaptive Model with Spatial Color Block), a novel interpolation approach that automatically identifies nearby points crucial for estimating soil nutrient values at a given location. In our approach, we not only consider spatial correlation but also incorporate the soil variables of sampled points. Delaunay triangulation and hash functions further divide data points into distinct clusters, with our model automatically selecting specific clusters. Moreover, our interpolation method integrates IDW and OK without requiring extensive training on real-world data. Extensive experiments on four real-world datasets, conducted through cross-validation, demonstrate the superior performance of our approach compared to eight state-of-the-art methods. 
653 |a Soil fertility 
653 |a Delaunay triangulation 
653 |a Spatial data 
653 |a Soil testing 
653 |a Nutrients 
653 |a Color 
653 |a Adaptive sampling 
653 |a Hash based algorithms 
653 |a Clustering 
653 |a Data points 
653 |a Adaptive algorithms 
653 |a Machine learning 
653 |a Remote sensing 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Neural networks 
653 |a Heavy metals 
653 |a Methods 
653 |a Algorithms 
653 |a Satellites 
700 1 |a Chen, Feng  |u Hebei University, School of Cyber Security and Computer Science, Baoding, China (GRID:grid.256885.4) (ISNI:0000 0004 1791 4722) 
700 1 |a Song, Xin  |u Hebei University, School of Cyber Security and Computer Science, Baoding, China (GRID:grid.256885.4) (ISNI:0000 0004 1791 4722) 
773 0 |t Applied Intelligence  |g vol. 55, no. 1 (Jan 2025), p. 53 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3134195890/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3134195890/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch