Machine learning force-field model for kinetic Monte Carlo simulations of itinerant Ising magnets

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 29, 2024), p. n/a
Autor principal: Tyberg, Alexa
Otros Autores: Fan, Yunhao, Gia-Wei Chern
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3134990621
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3134990621 
045 0 |b d20241129 
100 1 |a Tyberg, Alexa 
245 1 |a Machine learning force-field model for kinetic Monte Carlo simulations of itinerant Ising magnets 
260 |b Cornell University Library, arXiv.org  |c Nov 29, 2024 
513 |a Working Paper 
520 3 |a We present a scalable machine learning (ML) framework for large-scale kinetic Monte Carlo (kMC) simulations of itinerant electron Ising systems. As the effective interactions between Ising spins in such itinerant magnets are mediated by conducting electrons, the calculation of energy change due to a local spin update requires solving an electronic structure problem. Such repeated electronic structure calculations could be overwhelmingly prohibitive for large systems. Assuming the locality principle, a convolutional neural network (CNN) model is developed to directly predict the effective local field and the corresponding energy change associated with a given spin update based on Ising configuration in a finite neighborhood. As the kernel size of the CNN is fixed at a constant, the model can be directly scalable to kMC simulations of large lattices. Our approach is reminiscent of the ML force-field models widely used in first-principles molecular dynamics simulations. Applying our ML framework to a square-lattice double-exchange Ising model, we uncover unusual coarsening of ferromagnetic domains at low temperatures. Our work highlights the potential of ML methods for large-scale modeling of similar itinerant systems with discrete dynamical variables. 
653 |a First principles 
653 |a Machine learning 
653 |a Simulation 
653 |a Artificial neural networks 
653 |a Monte Carlo simulation 
653 |a Electron spin 
653 |a Electrons 
653 |a Ising model 
653 |a Magnetic domains 
653 |a Spin dynamics 
653 |a Molecular dynamics 
653 |a Magnets 
653 |a Electronic structure 
653 |a Ferromagnetism 
653 |a Low temperature 
653 |a Computer simulation 
700 1 |a Fan, Yunhao 
700 1 |a Gia-Wei Chern 
773 0 |t arXiv.org  |g (Nov 29, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3134990621/abstract/embedded/2AXJIZYYTBW5RQEH?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.19780