DisDSS: a novel Web-based smart disaster management system for determining the nature of a social media message for decision-making using deep learning – case study of COVID-19

Zapisane w:
Opis bibliograficzny
Wydane w:Global Knowledge, Memory and Communication vol. 73, no. 8/9 (2024), p. 1044-1065
1. autor: Singla, Annie
Kolejni autorzy: Agrawal, Rajat
Wydane:
Emerald Group Publishing Limited
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3134993712
003 UK-CbPIL
022 |a 2514-9342 
022 |a 2514-9350 
022 |a 0024-2535 
022 |a 1758-793X 
024 7 |a 10.1108/GKMC-07-2022-0180  |2 doi 
035 |a 3134993712 
045 2 |b d20241010  |b d20241129 
084 |a 46151  |2 nlm 
100 1 |a Singla, Annie  |u Centre of Excellence in Disaster Mitigation and Management, IIT Roorkee, Roorkee, India 
245 1 |a DisDSS: a novel Web-based smart disaster management system for determining the nature of a social media message for decision-making using deep learning – case study of COVID-19 
260 |b Emerald Group Publishing Limited  |c 2024 
513 |a Journal Article 
520 3 |a PurposeThis paper aims to propose DisDSS: a Web-based smart disaster management (DM) system for decision-making that will assist disaster professionals in determining the nature of disaster-related social media (SM) messages. The research classifies the tweets into need-based, availability-based, situational-based, general and irrelevant categories and visualizes them on a web interface, location-wise.Design/methodology/approachIt is worth mentioning that a fusion-based deep learning (DL) model is introduced to objectively determine the nature of an SM message. The proposed model uses the convolution neural network and bidirectional long short-term memory network layers.FindingsThe developed system leads to a better performance in accuracy, precision, recall, F-score, area under receiver operating characteristic curve and area under precision-recall curve, compared to other state-of-the-art methods in the literature. The contribution of this paper is three fold. First, it presents a new covid data set of SM messages with the label of nature of the message. Second, it offers a fusion-based DL model to classify SM data. Third, it presents a Web-based interface to visualize the structured information.Originality/valueThe architecture of DisDSS is analyzed based on the practical case study, i.e. COVID-19. The proposed DL-based model is embedded into a Web-based interface for decision support. To the best of the authors’ knowledge, this is India’s first SM-based DM system. 
610 4 |a Ushahidi 
653 |a Earthquakes 
653 |a Datasets 
653 |a Coronaviruses 
653 |a Social networks 
653 |a COVID-19 
653 |a Social media 
653 |a Deep learning 
653 |a Case studies 
653 |a Literature 
653 |a Novels 
653 |a Recall 
653 |a Bidirectionality 
653 |a Decision making 
653 |a Disaster management 
653 |a Disasters 
653 |a Learning 
653 |a Short term memory 
653 |a Neural networks 
653 |a Mass media 
653 |a Computerized decision support systems 
700 1 |a Agrawal, Rajat  |u Department of Management Studies, IIT Roorkee, Roorkee, India 
773 0 |t Global Knowledge, Memory and Communication  |g vol. 73, no. 8/9 (2024), p. 1044-1065 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3134993712/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3134993712/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3134993712/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch