Characterizing and Modeling AI-Driven Animal Ecology Studies at the Edge

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:arXiv.org (Dec 1, 2024), p. n/a
Үндсэн зохиолч: Kline, Jenna
Бусад зохиолчид: O'Quinn, Austin, Berger-Wolf, Tanya, Stewart, Christopher
Хэвлэсэн:
Cornell University Library, arXiv.org
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full text outside of ProQuest
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3138991824
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3138991824 
045 0 |b d20241201 
100 1 |a Kline, Jenna 
245 1 |a Characterizing and Modeling AI-Driven Animal Ecology Studies at the Edge 
260 |b Cornell University Library, arXiv.org  |c Dec 1, 2024 
513 |a Working Paper 
520 3 |a Platforms that run artificial intelligence (AI) pipelines on edge computing resources are transforming the fields of animal ecology and biodiversity, enabling novel wildlife studies in animals' natural habitats. With emerging remote sensing hardware, e.g., camera traps and drones, and sophisticated AI models in situ, edge computing will be more significant in future AI-driven animal ecology (ADAE) studies. However, the study's objectives, the species of interest, its behaviors, range, habitat, and camera placement affect the demand for edge resources at runtime. If edge resources are under-provisioned, studies can miss opportunities to adapt the settings of camera traps and drones to improve the quality and relevance of captured data. This paper presents salient features of ADAE studies that can be used to model latency, throughput objectives, and provision edge resources. Drawing from studies that span over fifty animal species, four geographic locations, and multiple remote sensing methods, we characterized common patterns in ADAE studies, revealing increasingly complex workflows involving various computer vision tasks with strict service level objectives (SLO). ADAE workflow demands will soon exceed individual edge devices' compute and memory resources, requiring multiple networked edge devices to meet performance demands. We developed a framework to scale traces from prior studies and replay them offline on representative edge platforms, allowing us to capture throughput and latency data across edge configurations. We used the data to calibrate queuing and machine learning models that predict performance on unseen edge configurations, achieving errors as low as 19%. 
653 |a Ecology 
653 |a Memory tasks 
653 |a Cameras 
653 |a Remote sensing 
653 |a Configuration management 
653 |a Artificial intelligence 
653 |a Edge computing 
653 |a Performance prediction 
653 |a Task complexity 
653 |a Workflow 
653 |a Memory devices 
653 |a Computer vision 
653 |a Platforms 
653 |a Machine learning 
653 |a Geographical locations 
653 |a Queueing 
700 1 |a O'Quinn, Austin 
700 1 |a Berger-Wolf, Tanya 
700 1 |a Stewart, Christopher 
773 0 |t arXiv.org  |g (Dec 1, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3138991824/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.01000