FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 2, 2024), p. n/a
Egile nagusia: Chen, Lisha
Beste egile batzuk: Saif, AFM, Shen, Yanning, Chen, Tianyi
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3138993613
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3138993613 
045 0 |b d20241202 
100 1 |a Chen, Lisha 
245 1 |a FERERO: A Flexible Framework for Preference-Guided Multi-Objective Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a Finding specific preference-guided Pareto solutions that represent different trade-offs among multiple objectives is critical yet challenging in multi-objective problems. Existing methods are restrictive in preference definitions and/or their theoretical guarantees. In this work, we introduce a Flexible framEwork for pREfeRence-guided multi-Objective learning (FERERO) by casting it as a constrained vector optimization problem. Specifically, two types of preferences are incorporated into this formulation -- the relative preference defined by the partial ordering induced by a polyhedral cone, and the absolute preference defined by constraints that are linear functions of the objectives. To solve this problem, convergent algorithms are developed with both single-loop and stochastic variants. Notably, this is the first single-loop primal algorithm for constrained vector optimization to our knowledge. The proposed algorithms adaptively adjust to both constraint and objective values, eliminating the need to solve different subproblems at different stages of constraint satisfaction. Experiments on multiple benchmarks demonstrate the proposed method is very competitive in finding preference-guided optimal solutions. Code is available at https://github.com/lisha-chen/FERERO/. 
653 |a Preferences 
653 |a Algorithms 
653 |a Multiple objective analysis 
653 |a Learning 
653 |a Constraints 
653 |a Optimization 
653 |a Linear functions 
700 1 |a Saif, AFM 
700 1 |a Shen, Yanning 
700 1 |a Chen, Tianyi 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3138993613/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.01773