Iterative Distributed Multinomial Regression
Sparad:
| I publikationen: | arXiv.org (Dec 2, 2024), p. n/a |
|---|---|
| Huvudupphov: | |
| Övriga upphov: | , |
| Utgiven: |
Cornell University Library, arXiv.org
|
| Ämnen: | |
| Länkar: | Citation/Abstract Full text outside of ProQuest |
| Taggar: |
Inga taggar, Lägg till första taggen!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3138995432 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 3138995432 | ||
| 045 | 0 | |b d20241202 | |
| 100 | 1 | |a Fan, Yanqin | |
| 245 | 1 | |a Iterative Distributed Multinomial Regression | |
| 260 | |b Cornell University Library, arXiv.org |c Dec 2, 2024 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a This article introduces an iterative distributed computing estimator for the multinomial logistic regression model with large choice sets. Compared to the maximum likelihood estimator, the proposed iterative distributed estimator achieves significantly faster computation and, when initialized with a consistent estimator, attains asymptotic efficiency under a weak dominance condition. Additionally, we propose a parametric bootstrap inference procedure based on the iterative distributed estimator and establish its consistency. Extensive simulation studies validate the effectiveness of the proposed methods and highlight the computational efficiency of the iterative distributed estimator. | |
| 653 | |a Asymptotic methods | ||
| 653 | |a Iterative methods | ||
| 653 | |a Maximum likelihood estimators | ||
| 653 | |a Regression models | ||
| 653 | |a Computing time | ||
| 653 | |a Distributed processing | ||
| 700 | 1 | |a Okar, Yigit | |
| 700 | 1 | |a Shi, Xuetao | |
| 773 | 0 | |t arXiv.org |g (Dec 2, 2024), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3138995432/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2412.01030 |