Primal-dual proximal bundle and conditional gradient methods for convex problems

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 23, 2024), p. n/a
Autor principal: Liang, Jiaming
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:This paper studies the primal-dual convergence and iteration-complexity of proximal bundle methods for solving nonsmooth problems with convex structures. More specifically, we develop a family of primal-dual proximal bundle methods for solving convex nonsmooth composite optimization problems and establish the iteration-complexity in terms of a primal-dual gap. We also propose a class of proximal bundle methods for solving convex-concave nonsmooth composite saddle-point problems and establish the iteration-complexity to find an approximate saddle-point. This paper places special emphasis on the primal-dual perspective of the proximal bundle method. In particular, we discover an interesting duality between the conditional gradient method and the cutting-plane scheme used within the proximal bundle method. Leveraging this duality, we further develop novel variants of both the conditional gradient method and the cutting-plane scheme.
ISSN:2331-8422
Font:Engineering Database