Graph Community Augmentation with GMM-based Modeling in Latent Space

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:arXiv.org (Dec 2, 2024), p. n/a
Prif Awdur: Fukushima, Shintaro
Awduron Eraill: Yamanishi, Kenji
Cyhoeddwyd:
Cornell University Library, arXiv.org
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full text outside of ProQuest
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3138998261
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3138998261 
045 0 |b d20241202 
100 1 |a Fukushima, Shintaro 
245 1 |a Graph Community Augmentation with GMM-based Modeling in Latent Space 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a This study addresses the issue of graph generation with generative models. In particular, we are concerned with graph community augmentation problem, which refers to the problem of generating unseen or unfamiliar graphs with a new community out of the probability distribution estimated with a given graph dataset. The graph community augmentation means that the generated graphs have a new community. There is a chance of discovering an unseen but important structure of graphs with a new community, for example, in a social network such as a purchaser network. Graph community augmentation may also be helpful for generalization of data mining models in a case where it is difficult to collect real graph data enough. In fact, there are many ways to generate a new community in an existing graph. It is desirable to discover a new graph with a new community beyond the given graph while we keep the structure of the original graphs to some extent for the generated graphs to be realistic. To this end, we propose an algorithm called the graph community augmentation (GCA). The key ideas of GCA are (i) to fit Gaussian mixture model (GMM) to data points in the latent space into which the nodes in the original graph are embedded, and (ii) to add data points in the new cluster in the latent space for generating a new community based on the minimum description length (MDL) principle. We empirically demonstrate the effectiveness of GCA for generating graphs with a new community structure on synthetic and real datasets. 
653 |a Probabilistic models 
653 |a Datasets 
653 |a Data augmentation 
653 |a Algorithms 
653 |a Data mining 
653 |a Graphs 
653 |a Social networks 
653 |a Data points 
700 1 |a Yamanishi, Kenji 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3138998261/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.01163