An implementation of neural simulation-based inference for parameter estimation in ATLAS

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Dec 2, 2024), p. n/a
Yazar: ATLAS Collaboration
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3139000063
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3139000063 
045 0 |b d20241202 
100 1 |a ATLAS Collaboration 
245 1 |a An implementation of neural simulation-based inference for parameter estimation in ATLAS 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a Neural simulation-based inference is a powerful class of machine-learning-based methods for statistical inference that naturally handles high-dimensional parameter estimation without the need to bin data into low-dimensional summary histograms. Such methods are promising for a range of measurements, including at the Large Hadron Collider, where no single observable may be optimal to scan over the entire theoretical phase space under consideration, or where binning data into histograms could result in a loss of sensitivity. This work develops a neural simulation-based inference framework for statistical inference, using neural networks to estimate probability density ratios, which enables the application to a full-scale analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty due to the finite number of events in training samples, develops a method to construct confidence intervals, and demonstrates a series of intermediate diagnostic checks that can be performed to validate the robustness of the method. As an example, the power and feasibility of the method are assessed on simulated data for a simplified version of an off-shell Higgs boson couplings measurement in the four-lepton final states. This approach represents an extension to the standard statistical methodology used by the experiments at the Large Hadron Collider, and can benefit many physics analyses. 
653 |a Simulation 
653 |a Quarks 
653 |a Parameter estimation 
653 |a Neural networks 
653 |a Higgs bosons 
653 |a Histograms 
653 |a Confidence intervals 
653 |a Parameter sensitivity 
653 |a Statistical methods 
653 |a Statistical inference 
653 |a Large Hadron Collider 
653 |a Uncertainty analysis 
653 |a Leptons 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Couplings 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3139000063/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.01600