Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 2, 2024), p. n/a
Autor principal: Fan, Yuxin
Otros Autores: Hu, Zhuohuan, Fu, Lei, Cheng, Yu, Wang, Liyang, Wang, Yuxiang
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3139000621
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3139000621 
045 0 |b d20241202 
100 1 |a Fan, Yuxin 
245 1 |a Research on Optimizing Real-Time Data Processing in High-Frequency Trading Algorithms using Machine Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a High-frequency trading (HFT) represents a pivotal and intensely competitive domain within the financial markets. The velocity and accuracy of data processing exert a direct influence on profitability, underscoring the significance of this field. The objective of this work is to optimise the real-time processing of data in high-frequency trading algorithms. The dynamic feature selection mechanism is responsible for monitoring and analysing market data in real time through clustering and feature weight analysis, with the objective of automatically selecting the most relevant features. This process employs an adaptive feature extraction method, which enables the system to respond and adjust its feature set in a timely manner when the data input changes, thus ensuring the efficient utilisation of data. The lightweight neural networks are designed in a modular fashion, comprising fast convolutional layers and pruning techniques that facilitate the expeditious completion of data processing and output prediction. In contrast to conventional deep learning models, the neural network architecture has been specifically designed to minimise the number of parameters and computational complexity, thereby markedly reducing the inference time. The experimental results demonstrate that the model is capable of maintaining consistent performance in the context of varying market conditions, thereby illustrating its advantages in terms of processing speed and revenue enhancement. 
653 |a Feature extraction 
653 |a Weight analysis 
653 |a Data analysis 
653 |a Adaptive systems 
653 |a Data processing 
653 |a Neural networks 
653 |a High frequency trading 
653 |a Modular systems 
653 |a Clustering 
653 |a Optimization 
653 |a Algorithms 
653 |a Electronic trading systems 
653 |a Deep learning 
653 |a Machine learning 
653 |a Real time 
700 1 |a Hu, Zhuohuan 
700 1 |a Fu, Lei 
700 1 |a Cheng, Yu 
700 1 |a Wang, Liyang 
700 1 |a Wang, Yuxiang 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3139000621/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.01062