THB-Diff: a GPU-accelerated differentiable programming framework for THB-splines

Guardado en:
Bibliografiske detaljer
Udgivet i:Engineering with Computers vol. 40, no. 6 (Dec 2024), p. 3477
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3139002977
003 UK-CbPIL
022 |a 0177-0667 
022 |a 1435-5663 
024 7 |a 10.1007/s00366-023-01929-1  |2 doi 
035 |a 3139002977 
045 2 |b d20241201  |b d20241231 
084 |a 137654  |2 nlm 
245 1 |a THB-Diff: a GPU-accelerated differentiable programming framework for THB-splines 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a We have developed a differentiable programming framework for truncated hierarchical B-splines (THB-splines), which can be used for several applications in geometry modeling, such as surface fitting and deformable image registration, and can be easily integrated with geometric deep learning frameworks. Differentiable programming is a novel paradigm that enables an algorithm to be differentiated via automatic differentiation, i.e., using automatic differentiation to compute the derivatives of its outputs with respect to its inputs or parameters. Differentiable programming has been used extensively in machine learning for obtaining gradients required in optimization algorithms such as stochastic gradient descent (SGD). While incorporating differentiable programming with traditional functions is straightforward, it is challenging when the functions are complex, such as splines. In this work, we extend the differentiable programming paradigm to THB-splines. THB-splines offer an efficient approach for complex surface fitting by utilizing a hierarchical tensor structure of B-splines, enabling local adaptive refinement. However, this approach brings challenges, such as a larger computational overhead and the non-trivial implementation of automatic differentiation and parallel evaluation algorithms. We use custom kernel functions for GPU acceleration in forward and backward evaluation that are necessary for differentiable programming of THB-splines. Our approach not only improves computational efficiency but also significantly enhances the speed of surface evaluation compared to previous methods. Our differentiable THB-splines framework facilitates faster and more accurate surface modeling with local refinement, with several applications in CAD and isogeometric analysis. 
653 |a Differentiation 
653 |a Formability 
653 |a Surface geometry 
653 |a Graphics processing units 
653 |a B spline functions 
653 |a Image registration 
653 |a Tensors 
653 |a Programming 
653 |a Algorithms 
653 |a Acceleration 
653 |a Deep learning 
653 |a Machine learning 
653 |a Kernel functions 
773 0 |t Engineering with Computers  |g vol. 40, no. 6 (Dec 2024), p. 3477 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3139002977/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3139002977/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch