Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:arXiv.org (Dec 3, 2024), p. n/a
Үндсэн зохиолч: Yang, Judy X
Бусад зохиолчид: Wang, Jing, Long, Zekun, Chenhong Sui, Zhou, Jun
Хэвлэсэн:
Cornell University Library, arXiv.org
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full text outside of ProQuest
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3140664070
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3140664070 
045 0 |b d20241203 
100 1 |a Yang, Judy X 
245 1 |a Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Classifying hyperspectral images (HSIs) is a complex task in remote sensing due to the high-dimensional nature and volume of data involved. To address these challenges, we propose the Spectral-Spatial non-Linear Model, a novel framework that significantly reduces data volume while enhancing classification accuracy. Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis. This hybrid approach leverages the operational efficiency of CNNs and incorporates dynamic feature extraction inspired by attention mechanisms, optimizing performance without the high computational demands typically associated with transformer-based models. The SS non-Linear Model is designed to process hyperspectral data bidirectionally, achieving notable classification and efficiency improvements by fusing spectral and spatial features effectively. This approach yields superior classification accuracy compared to existing benchmarks while maintaining computational efficiency, making it suitable for resource-constrained environments. We validate the SS non-Linear Model on three widely recognized datasets, Houston 2013, Indian Pines, and Pavia University, demonstrating its ability to outperform current state-of-the-art models in HSI classification and efficiency. This work highlights the innovative methodology of the SS non-Linear Model and its practical benefits for remote sensing applications, where both data efficiency and classification accuracy are critical. For further details, please refer to our code repository on GitHub: HSILinearModel. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Remote sensing 
653 |a Spatial data 
653 |a Image enhancement 
653 |a Artificial neural networks 
653 |a Efficiency 
653 |a Classification 
653 |a Image classification 
653 |a Machine learning 
653 |a Hyperspectral imaging 
700 1 |a Wang, Jing 
700 1 |a Long, Zekun 
700 1 |a Chenhong Sui 
700 1 |a Zhou, Jun 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3140664070/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.00283