Federated Analytics in Practice: Engineering for Privacy, Scalability and Practicality

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 3, 2024), p. n/a
Autor principal: Srinivas, Harish
Altres autors: Cormode, Graham, Honarkhah, Mehrdad, Lurye, Samuel, Hehir, Jonathan, He, Lunwen, Hong, George, Ahmed, Magdy, Huba, Dzmitry, Wang, Kaikai, Guo, Shen, Bhattacharya, Shoubhik
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3140664428
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3140664428 
045 0 |b d20241203 
100 1 |a Srinivas, Harish 
245 1 |a Federated Analytics in Practice: Engineering for Privacy, Scalability and Practicality 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Cross-device Federated Analytics (FA) is a distributed computation paradigm designed to answer analytics queries about and derive insights from data held locally on users' devices. On-device computations combined with other privacy and security measures ensure that only minimal data is transmitted off-device, achieving a high standard of data protection. Despite FA's broad relevance, the applicability of existing FA systems is limited by compromised accuracy; lack of flexibility for data analytics; and an inability to scale effectively. In this paper, we describe our approach to combine privacy, scalability, and practicality to build and deploy a system that overcomes these limitations. Our FA system leverages trusted execution environments (TEEs) and optimizes the use of on-device computing resources to facilitate federated data processing across large fleets of devices, while ensuring robust, defensible, and verifiable privacy safeguards. We focus on federated analytics (statistics and monitoring), in contrast to systems for federated learning (ML workloads), and we flag the key differences. 
653 |a Data analysis 
653 |a Systems analysis 
653 |a Data processing 
653 |a Privacy 
653 |a Federated learning 
700 1 |a Cormode, Graham 
700 1 |a Honarkhah, Mehrdad 
700 1 |a Lurye, Samuel 
700 1 |a Hehir, Jonathan 
700 1 |a He, Lunwen 
700 1 |a Hong, George 
700 1 |a Ahmed, Magdy 
700 1 |a Huba, Dzmitry 
700 1 |a Wang, Kaikai 
700 1 |a Guo, Shen 
700 1 |a Bhattacharya, Shoubhik 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3140664428/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02340