Access Control Analysis in Heterogeneous Big Data Management Systems

Salvato in:
Dettagli Bibliografici
Pubblicato in:Programming and Computer Software vol. 50, no. 7 (Dec 2024), p. 549
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3140795426
003 UK-CbPIL
022 |a 0361-7688 
022 |a 1608-3261 
024 7 |a 10.1134/S0361768824700269  |2 doi 
035 |a 3140795426 
045 2 |b d20241201  |b d20241231 
245 1 |a Access Control Analysis in Heterogeneous Big Data Management Systems 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Big data management systems are in demand today in almost all industries, being also a foundation for artificial intelligence training. The use of heterogeneous polystores in big data systems has led to the fact that tools within the same system have different data granularity and access control models. The harmonization of these components by the security administrator and the implementation of a common access policy are now carried out by hand. This leads to an increasing number of vulnerabilities, which in turn become frequent causes of data leaks. The current situation in the field of automation and analysis of access control in big data systems reveals the lack of automation solutions for polystore-based systems. This paper addresses the problem of automated access control analysis in big data management systems. We formulate and discuss the main contradiction between the requirement of scalability and flexibility of access control and the increased workload on the security administrator, aggravated by the use of different data and access control models in system components. To solve this problem, we propose a new automated method for analyzing security policies based on a graph model, which reduces the number of potential vulnerabilities caused by incorrect management of big data systems. The proposed method uses the data lifecycle model of the system, its current settings, and the required security policy. The use of two-pass analysis (from data sources to data receivers and back) allows us to solve two problems: the analysis of the access control system for potential vulnerabilities and the check for business logic vulnerabilities. As an example, we consider the use of a developed prototype tool for security policy analysis in a big data management system. 
653 |a Data management 
653 |a Data analysis 
653 |a Big Data 
653 |a Data models 
653 |a Data integrity 
653 |a Systems analysis 
653 |a Security 
653 |a Infrastructure 
653 |a Distributed ledger 
653 |a Policy analysis 
653 |a Knowledge management 
653 |a Flexibility 
653 |a Data systems 
653 |a Demand analysis 
653 |a Data processing 
653 |a Access control 
653 |a Blockchain 
653 |a Data encryption 
653 |a Control systems 
653 |a Automation 
653 |a Artificial intelligence 
653 |a Workloads 
653 |a Management systems 
773 0 |t Programming and Computer Software  |g vol. 50, no. 7 (Dec 2024), p. 549 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3140795426/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3140795426/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3140795426/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch