RetCompletion:High-Speed Inference Image Completion with Retentive Network

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:arXiv.org (Dec 4, 2024), p. n/a
Κύριος συγγραφέας: Cang, Yueyang
Άλλοι συγγραφείς: Hu, Pingge, Zhang, Xiaoteng, Wang, Xingtong, Liu, Yuhang, Shi, Li
Έκδοση:
Cornell University Library, arXiv.org
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full text outside of ProQuest
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
Περιγραφή
Περίληψη:Time cost is a major challenge in achieving high-quality pluralistic image completion. Recently, the Retentive Network (RetNet) in natural language processing offers a novel approach to this problem with its low-cost inference capabilities. Inspired by this, we apply RetNet to the pluralistic image completion task in computer vision. We present RetCompletion, a two-stage framework. In the first stage, we introduce Bi-RetNet, a bidirectional sequence information fusion model that integrates contextual information from images. During inference, we employ a unidirectional pixel-wise update strategy to restore consistent image structures, achieving both high reconstruction quality and fast inference speed. In the second stage, we use a CNN for low-resolution upsampling to enhance texture details. Experiments on ImageNet and CelebA-HQ demonstrate that our inference speed is 10\(\times\) faster than ICT and 15\(\times\) faster than RePaint. The proposed RetCompletion significantly improves inference speed and delivers strong performance.
ISSN:2331-8422
Πηγή:Engineering Database