Edge System Design Using Containers and Unikernels for IoT Applications

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 8, 2024), p. n/a
Autor principal: Kaiser, Shahidullah
Altres autors: Ali Saman Tosun, Korkmaz, Turgay
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3141255029
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141255029 
045 0 |b d20241208 
100 1 |a Kaiser, Shahidullah 
245 1 |a Edge System Design Using Containers and Unikernels for IoT Applications 
260 |b Cornell University Library, arXiv.org  |c Dec 8, 2024 
513 |a Working Paper 
520 3 |a Edge computing is emerging as a key enabler of low-latency, high-efficiency processing for the Internet of Things (IoT) and other real-time applications. To support these demands, containerization has gained traction in edge computing due to its lightweight virtualization and efficient resource management. However, there is currently no established framework to leverage both containers and unikernels on edge devices for optimized IoT deployments. This paper proposes a hybrid edge system design that leverages container and unikernel technologies to optimize resource utilization based on application complexity. Containers are employed for resource-intensive applications, e.g., computer vision, providing faster processing, flexibility, and ease of deployment. In contrast, unikernels are used for lightweight applications, offering enhanced resource performance with minimal overhead. Our system design also incorporates container orchestration to efficiently manage multiple instances across the edge efficiently, ensuring scalability and reliability. We demonstrate our hybrid approach's performance and efficiency advantages through real-world computer vision and data science applications on ARM-powered edge device. Our results demonstrate that this hybrid approach improves resource utilization and reduces latency compared to traditional virtualized solutions. This work provides insights into optimizing edge infrastructures, enabling more efficient and specialized deployment strategies for diverse application workloads. 
653 |a Containers 
653 |a Internet of Things 
653 |a Edge computing 
653 |a Computer vision 
653 |a Systems design 
653 |a Weight reduction 
653 |a Resource management 
653 |a Resource utilization 
653 |a Design optimization 
653 |a Real time 
653 |a Lightweight 
700 1 |a Ali Saman Tosun 
700 1 |a Korkmaz, Turgay 
773 0 |t arXiv.org  |g (Dec 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141255029/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.03032