Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 4, 2024), p. n/a
Autor principal: Zhang, XiuYu
Altres autors: Luo, Zening, Lu, Michelle E
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3141256987
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141256987 
045 0 |b d20241204 
100 1 |a Zhang, XiuYu 
245 1 |a Partially Conditioned Patch Parallelism for Accelerated Diffusion Model Inference 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Diffusion models have exhibited exciting capabilities in generating images and are also very promising for video creation. However, the inference speed of diffusion models is limited by the slow sampling process, restricting its use cases. The sequential denoising steps required for generating a single sample could take tens or hundreds of iterations and thus have become a significant bottleneck. This limitation is more salient for applications that are interactive in nature or require small latency. To address this challenge, we propose Partially Conditioned Patch Parallelism (PCPP) to accelerate the inference of high-resolution diffusion models. Using the fact that the difference between the images in adjacent diffusion steps is nearly zero, Patch Parallelism (PP) leverages multiple GPUs communicating asynchronously to compute patches of an image in multiple computing devices based on the entire image (all patches) in the previous diffusion step. PCPP develops PP to reduce computation in inference by conditioning only on parts of the neighboring patches in each diffusion step, which also decreases communication among computing devices. As a result, PCPP decreases the communication cost by around \(70\%\) compared to DistriFusion (the state of the art implementation of PP) and achieves \(2.36\sim 8.02\times\) inference speed-up using \(4\sim 8\) GPUs compared to \(2.32\sim 6.71\times\) achieved by DistriFusion depending on the computing device configuration and resolution of generation at the cost of a possible decrease in image quality. PCPP demonstrates the potential to strike a favorable trade-off, enabling high-quality image generation with substantially reduced latency. 
653 |a Parallel processing 
653 |a Diffusion rate 
653 |a Computation 
653 |a Image resolution 
653 |a Image quality 
653 |a Image processing 
653 |a Communication 
653 |a Conditioning 
653 |a Inference 
700 1 |a Luo, Zening 
700 1 |a Lu, Michelle E 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141256987/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02962