Exploring the Potential of Llama Models in Automated Code Refinement: A Replication Study

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Dec 3, 2024), p. n/a
Príomhchruthaitheoir: Caumartin, Genevieve
Rannpháirtithe: Qin, Qiaolin, Chatragadda, Sharon, Panjrolia, Janmitsinh, Li, Heng, Diego Elias Costa
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3141257003
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141257003 
045 0 |b d20241203 
100 1 |a Caumartin, Genevieve 
245 1 |a Exploring the Potential of Llama Models in Automated Code Refinement: A Replication Study 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Code reviews are an integral part of software development and have been recognized as a crucial practice for minimizing bugs and favouring higher code quality. They serve as an important checkpoint before committing code and play an essential role in knowledge transfer between developers. However, code reviews can be time-consuming and can stale the development of large software projects. In a recent study, Guo et al. assessed how ChatGPT3.5 can help the code review process. They evaluated the effectiveness of ChatGPT in automating the code refinement tasks, where developers recommend small changes in the submitted code. While Guo et al. 's study showed promising results, proprietary models like ChatGPT pose risks to data privacy and incur extra costs for software projects. In this study, we explore alternatives to ChatGPT in code refinement tasks by including two open-source, smaller-scale large language models: CodeLlama and Llama 2 (7B parameters). Our results show that, if properly tuned, the Llama models, particularly CodeLlama, can achieve reasonable performance, often comparable to ChatGPT in automated code refinement. However, not all code refinement tasks are equally successful: tasks that require changing existing code (e.g., refactoring) are more manageable for models to automate than tasks that demand new code. Our study highlights the potential of open-source models for code refinement, offering cost-effective, privacy-conscious solutions for real-world software development. 
653 |a Debugging 
653 |a Knowledge management 
653 |a Source code 
653 |a Software development 
653 |a Large language models 
653 |a Automation 
653 |a Chatbots 
653 |a Privacy 
653 |a Effectiveness 
700 1 |a Qin, Qiaolin 
700 1 |a Chatragadda, Sharon 
700 1 |a Panjrolia, Janmitsinh 
700 1 |a Li, Heng 
700 1 |a Diego Elias Costa 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141257003/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02789