Assessing the performance of CT image denoisers using Laguerre-Gauss Channelized Hotelling Observer for lesion detection

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 4, 2024), p. n/a
Autore principale: Kc, Prabhat
Altri autori: Zeng, Rongping
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3141257047
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/NSS/MIC/RTSD57108.2024.10658147  |2 doi 
035 |a 3141257047 
045 0 |b d20241204 
100 1 |a Kc, Prabhat 
245 1 |a Assessing the performance of CT image denoisers using Laguerre-Gauss Channelized Hotelling Observer for lesion detection 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a The remarkable success of deep learning methods in solving computer vision problems, such as image classification, object detection, scene understanding, image segmentation, etc., has paved the way for their application in biomedical imaging. One such application is in the field of CT image denoising, whereby deep learning methods are proposed to recover denoised images from noisy images acquired at low radiation. Outputs derived from applying deep learning denoising algorithms may appear clean and visually pleasing; however, the underlying diagnostic image quality may not be on par with their normal-dose CT counterparts. In this work, we assessed the image quality of deep learning denoising algorithms by making use of visual perception- and data fidelity-based task-agnostic metrics (like the PSNR and the SSIM) - commonly used in the computer vision - and a task-based detectability assessment (the LCD) - extensively used in the CT imaging. When compared against normal-dose CT images, the deep learning denoisers outperformed low-dose CT based on metrics like the PSNR (by 2.4 to 3.8 dB) and SSIM (by 0.05 to 0.11). However, based on the LCD performance, the detectability using quarter-dose denoised outputs was inferior to that obtained using normal-dose CT scans. 
653 |a Visual tasks 
653 |a Deep learning 
653 |a Visual perception 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Scene analysis 
653 |a Computed tomography 
653 |a Noise reduction 
653 |a Medical imaging 
653 |a Image classification 
653 |a Image acquisition 
653 |a Algorithms 
653 |a Image quality 
653 |a Object recognition 
653 |a Machine learning 
653 |a Visual perception driven algorithms 
700 1 |a Zeng, Rongping 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141257047/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02920