PopSweeper: Automatically Detecting and Resolving App-Blocking Pop-Ups to Assist Automated Mobile GUI Testing

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 4, 2024), p. n/a
Автор: Guo, Linqiang
Інші автори: Liu, Wei, Yi Wen Heng, Tse-Hsun, Chen, Wang, Yang
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3141257487
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141257487 
045 0 |b d20241204 
100 1 |a Guo, Linqiang 
245 1 |a PopSweeper: Automatically Detecting and Resolving App-Blocking Pop-Ups to Assist Automated Mobile GUI Testing 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Graphical User Interfaces (GUIs) are the primary means by which users interact with mobile applications, making them crucial to both app functionality and user experience. However, a major challenge in automated testing is the frequent appearance of app-blocking pop-ups, such as ads or system alerts, which obscure critical UI elements and disrupt test execution, often requiring manual intervention. These interruptions lead to inaccurate test results, increased testing time, and reduced reliability, particularly for stakeholders conducting large-scale app testing. To address this issue, we introduce PopSweeper, a novel tool designed to detect and resolve app-blocking pop-ups in real-time during automated GUI testing. PopSweeper combines deep learning-based computer vision techniques for pop-up detection and close button localization, allowing it to autonomously identify pop-ups and ensure uninterrupted testing. We evaluated PopSweeper on over 72K app screenshots from the RICO dataset and 87 top-ranked mobile apps collected from app stores, manually identifying 832 app-blocking pop-ups. PopSweeper achieved 91.7% precision and 93.5% recall in pop-up classification and 93.9% BoxAP with 89.2% recall in close button detection. Furthermore, end-to-end evaluations demonstrated that PopSweeper successfully resolved blockages in 87.1% of apps with minimal overhead, achieving classification and close button detection within 60 milliseconds per frame. These results highlight PopSweeper's capability to enhance the accuracy and efficiency of automated GUI testing by mitigating pop-up interruptions. 
653 |a Recall 
653 |a User interface 
653 |a User experience 
653 |a Graphical user interface 
653 |a Testing time 
653 |a Computer vision 
653 |a Classification 
653 |a Automation 
653 |a Applications programs 
653 |a Real time 
653 |a Mobile computing 
700 1 |a Liu, Wei 
700 1 |a Yi Wen Heng 
700 1 |a Tse-Hsun 
700 1 |a Chen 
700 1 |a Wang, Yang 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141257487/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02933