Bayesian Transfer Learning for Enhanced Estimation and Inference

Spremljeno u:
Bibliografski detalji
Izdano u:arXiv.org (Dec 4, 2024), p. n/a
Glavni autor: Lai, Daoyuan
Daljnji autori: Oscar Hernan Madrid Padilla, Gu, Tian
Izdano:
Cornell University Library, arXiv.org
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3141258049
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141258049 
045 0 |b d20241204 
100 1 |a Lai, Daoyuan 
245 1 |a Bayesian Transfer Learning for Enhanced Estimation and Inference 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Transfer learning enhances model performance in a target population with limited samples by leveraging knowledge from related studies. While many works focus on improving predictive performance, challenges of statistical inference persist. Bayesian approaches naturally offer uncertainty quantification for parameter estimates, yet existing Bayesian transfer learning methods are typically limited to single-source scenarios or require individual-level data. We introduce TRansfer leArning via guideD horseshoE prioR (TRADER), a novel approach enabling multi-source transfer through pre-trained models in high-dimensional linear regression. TRADER shrinks target parameters towards a weighted average of source estimates, accommodating sources with different scales. Theoretical investigation shows that TRADER achieves faster posterior contraction rates than standard continuous shrinkage priors when sources align well with the target while preventing negative transfer from heterogeneous sources. The analysis of finite-sample marginal posterior behavior reveals that TRADER achieves desired frequentist coverage probabilities, even for coefficients with moderate signal strength--a scenario where standard continuous shrinkage priors struggle. Extensive numerical studies and a real-data application estimating the association between blood glucose and insulin use in the Hispanic diabetic population demonstrate that TRADER improves estimation and inference accuracy over continuous shrinkage priors using target data alone, while outperforming a state-of-the-art transfer learning method that requires individual-level data. 
653 |a Estimates 
653 |a Signal strength 
653 |a Knowledge management 
653 |a Statistical methods 
653 |a Parameter estimation 
653 |a Bayesian analysis 
653 |a Parameter uncertainty 
653 |a Statistical analysis 
653 |a Statistical inference 
653 |a Population (statistical) 
700 1 |a Oscar Hernan Madrid Padilla 
700 1 |a Gu, Tian 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141258049/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.02986