Application of machine learning and deep learning for predicting groundwater levels in the West Coast Aquifer System, South Africa

Сохранить в:
Библиографические подробности
Опубликовано в::Earth Science Informatics vol. 18, no. 1 (Jan 2025), p. 6
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3141276232
003 UK-CbPIL
022 |a 1865-0473 
022 |a 1865-0481 
024 7 |a 10.1007/s12145-024-01623-w  |2 doi 
035 |a 3141276232 
045 2 |b d20250101  |b d20250131 
084 |a 109043  |2 nlm 
245 1 |a Application of machine learning and deep learning for predicting groundwater levels in the West Coast Aquifer System, South Africa 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Groundwater models are valuable tools to quantify the response of groundwater level to hydrological stresses induced by climate variability and groundwater extraction. These models strive for sustainable groundwater management by balancing recharge, discharge, and natural processes, with groundwater level serving as a critical response variable. While traditional numerical models are labour-intensive, machine learning and deep learning offer a data-driven alternative, learning from historical data to predict groundwater level variations. The groundwater level in wells is typically recorded as continuous groundwater level time series data and is essential for implementing managed aquifer recharge within a particular region. Machine learning and deep learning are essential tools to generate a data-driven approach to modeling an area, and there is a need to understand if they are the most suitable tools to improve model prediction. To address this objective, the study evaluates two machine learning algorithms - Random Forest (RF) and Support Vector Machine (SVM); and two deep learning algorithms - Simple Recurrent Neural Network (SimpleRNN) and Long Short-Term Memory (LSTM) for modeling groundwater level changes in the West Coast Aquifer System of South Africa. Analysis of regression error metrics on the test dataset revealed that SVM outperformed the other models in terms of the root mean square error, whereas random forest had the best performance in terms of the MAE. In the accuracy analysis of predicted groundwater levels, SVM achieved the highest accuracy with an MAE of 0.356 m and an RMSE of 0.372 m. The study concludes that machine learning and deep learning are effective tools for improved modeling and prediction of groundwater level. Further research can incorporate more detailed geologic information of the study area for enhanced interpretation. 
651 4 |a South Africa 
653 |a Coastal aquifers 
653 |a Climate variability 
653 |a Deep learning 
653 |a Groundwater management 
653 |a Groundwater models 
653 |a Sustainability management 
653 |a Aquifers 
653 |a Groundwater levels 
653 |a Neural networks 
653 |a Groundwater recharge 
653 |a Aquifer recharge 
653 |a Modelling 
653 |a Machine learning 
653 |a Groundwater data 
653 |a Accuracy 
653 |a Water wells 
653 |a Numerical models 
653 |a Support vector machines 
653 |a Groundwater 
653 |a Climate models 
653 |a Root-mean-square errors 
653 |a Mathematical models 
653 |a Recurrent neural networks 
653 |a Algorithms 
653 |a Aquifer systems 
653 |a Aquifer management 
653 |a Aquifer testing 
653 |a Predictions 
653 |a Environmental 
773 0 |t Earth Science Informatics  |g vol. 18, no. 1 (Jan 2025), p. 6 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141276232/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3141276232/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch