Enhancing IR-based Fault Localization using Large Language Models

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 4, 2024), p. n/a
Autore principale: Shao, Shuai
Altri autori: Yu, Tingting
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3141681281
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141681281 
045 0 |b d20241204 
100 1 |a Shao, Shuai 
245 1 |a Enhancing IR-based Fault Localization using Large Language Models 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Information Retrieval-based Fault Localization (IRFL) techniques aim to identify source files containing the root causes of reported failures. While existing techniques excel in ranking source files, challenges persist in bug report analysis and query construction, leading to potential information loss. Leveraging large language models like GPT-4, this paper enhances IRFL by categorizing bug reports based on programming entities, stack traces, and natural language text. Tailored query strategies, the initial step in our approach (LLmiRQ), are applied to each category. To address inaccuracies in queries, we introduce a user and conversational-based query reformulation approach, termed LLmiRQ+. Additionally, to further enhance query utilization, we implement a learning-to-rank model that leverages key features such as class name match score and call graph score. This approach significantly improves the relevance and accuracy of queries. Evaluation on 46 projects with 6,340 bug reports yields an MRR of 0.6770 and MAP of 0.5118, surpassing seven state-of-the-art IRFL techniques, showcasing superior performance. 
653 |a Debugging 
653 |a Large language models 
653 |a Queries 
653 |a Localization 
653 |a Fault location 
653 |a Information retrieval 
653 |a Query languages 
700 1 |a Yu, Tingting 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141681281/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.03754