A mathematical language for linking fine-scale structure in spikes from hundreds to thousands of neurons with behaviour

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 5, 2024), p. n/a
Autor principal: Busch, Alexandra N
Otros Autores: Budzinski, Roberto C, Pasini, Federico W, Mináč, Ján, Michaels, Jonathan A, Roussy, Megan, Gulli, Roberto A, Corrigan, Ben C, Pruszynski, J Andrew, Martinez-Trujillo, Julio, Muller, Lyle E
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3141681464
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141681464 
045 0 |b d20241205 
100 1 |a Busch, Alexandra N 
245 1 |a A mathematical language for linking fine-scale structure in spikes from hundreds to thousands of neurons with behaviour 
260 |b Cornell University Library, arXiv.org  |c Dec 5, 2024 
513 |a Working Paper 
520 3 |a Recent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor. We introduce a new mathematical operation to decompose complex spike patterns into a set of simple, structured elements. This creates a mathematical language that allows comparing spike patterns across trials, detecting sub-patterns, and making links to behaviour via a clear distance measure. We apply the method to dual Utah array recordings from macaque prefrontal cortex, where this technique reveals previously unseen structure that can predict both memory-guided decisions and errors in a virtual-reality working memory task. These results demonstrate that this technique provides a powerful new approach to understand structure in the spike times of neural populations, at a scale that will continue to grow more and more rapidly in upcoming years. 
653 |a Neurons 
653 |a Recording 
653 |a Memory tasks 
653 |a Virtual reality 
653 |a Virtual memory systems 
700 1 |a Budzinski, Roberto C 
700 1 |a Pasini, Federico W 
700 1 |a Mináč, Ján 
700 1 |a Michaels, Jonathan A 
700 1 |a Roussy, Megan 
700 1 |a Gulli, Roberto A 
700 1 |a Corrigan, Ben C 
700 1 |a Pruszynski, J Andrew 
700 1 |a Martinez-Trujillo, Julio 
700 1 |a Muller, Lyle E 
773 0 |t arXiv.org  |g (Dec 5, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141681464/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.03804