Evolution of ivermectin resistance in the nematode model Caenorhabditis elegans: critical influence of population size and unexpected cross-resistance to emodepside

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Dec 6, 2024)
Autor principal: Hellinga, Jacqueline
Altres autors: Trubenova, Barbora, Wagner, Jessica, Regoes, Roland R, Krucken, Jurgen, Schulenburg, Hinrich, Georg Von Samson-Himmelstjerna
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3141682316
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.03.626540  |2 doi 
035 |a 3141682316 
045 0 |b d20241206 
100 1 |a Hellinga, Jacqueline 
245 1 |a Evolution of ivermectin resistance in the nematode model Caenorhabditis elegans: critical influence of population size and unexpected cross-resistance to emodepside 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 6, 2024 
513 |a Working Paper 
520 3 |a The emergence and spread of anthelmintic resistance represent a major challenge for treating parasitic nematodes, threatening mass-drug control programs in humans and zoonotic species. Currently, experimental evidence to understand the influence of management (e.g., treatment intensity and frequency) and parasite-associated factors (e.g., genetic variation, population size and mutation rates) is lacking. To rectify this knowledge gap, we performed controlled evolution experiments with the model nematode Caenorhabditis elegans and further evaluated the evolution dynamics with a computational model. Large population size was critical for rapid ivermectin resistance evolution in vitro and in silico. Male nematodes were favored during resistance evolution, indicating a selective advantage of sexual recombination under drug pressure in vitro. Ivermectin resistance evolution led to the expected emergence of cross-resistance to the structurally related anthelmintic moxidectin but unexpectedly also to the structurally unrelated anthelmintic emodepside that has an entirely different mode of action. In contrast, albendazole, levamisole, and monepantel efficacy were not influenced by the evolution of Ivermectin resistance. We conclude that combining computational modeling with in vitro evolution experiments to test specific aspects of evolution directly represents a promising approach to guide the development of novel treatment strategies to anticipate and mitigate resistance evolution in parasitic nematodes.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Ivermectin 
653 |a Cross-resistance 
653 |a Population genetics 
653 |a Computer applications 
653 |a Evolution 
653 |a Nematodes 
653 |a Mutation rates 
653 |a Control programs 
653 |a Albendazole 
653 |a Anthelmintic agents 
653 |a Genetic diversity 
653 |a Levamisole 
653 |a Caenorhabditis elegans 
700 1 |a Trubenova, Barbora 
700 1 |a Wagner, Jessica 
700 1 |a Regoes, Roland R 
700 1 |a Krucken, Jurgen 
700 1 |a Schulenburg, Hinrich 
700 1 |a Georg Von Samson-Himmelstjerna 
773 0 |t bioRxiv  |g (Dec 6, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141682316/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3141682316/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.03.626540v1