A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:arXiv.org (Dec 5, 2024), p. n/a
Päätekijä: Acal, Christian
Muut tekijät: Contreras, Elena, Montero, Ismael, Ruiz-Castro, Juan Eloy
Julkaistu:
Cornell University Library, arXiv.org
Aiheet:
Linkit:Citation/Abstract
Full text outside of ProQuest
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3141682372
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.3934/mbe.2024065 10.3934/mbe.2024065  |2 doi 
035 |a 3141682372 
045 0 |b d20241205 
100 1 |a Acal, Christian 
245 1 |a A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions 
260 |b Cornell University Library, arXiv.org  |c Dec 5, 2024 
513 |a Working Paper 
520 3 |a Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients. 
653 |a Python 
653 |a Programming environments 
653 |a Markov chains 
653 |a Parameter estimation 
653 |a Applications programs 
653 |a Statistical analysis 
653 |a Goodness of fit 
653 |a Computer graphics 
653 |a Breast cancer 
653 |a User requirements 
700 1 |a Contreras, Elena 
700 1 |a Montero, Ismael 
700 1 |a Ruiz-Castro, Juan Eloy 
773 0 |t arXiv.org  |g (Dec 5, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141682372/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.03975