Certified Learning of Incremental ISS Controllers for Unknown Nonlinear Polynomial Dynamics

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 5, 2024), p. n/a
Autore principale: Zaker, Mahdieh
Altri autori: Angeli, David, Lavaei, Abolfazl
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3141682444
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3141682444 
045 0 |b d20241205 
100 1 |a Zaker, Mahdieh 
245 1 |a Certified Learning of Incremental ISS Controllers for Unknown Nonlinear Polynomial Dynamics 
260 |b Cornell University Library, arXiv.org  |c Dec 5, 2024 
513 |a Working Paper 
520 3 |a Incremental input-to-state stability (delta-ISS) offers a robust framework to ensure that small input variations result in proportionally minor deviations in the state of a nonlinear system. This property is essential in practical applications where input precision cannot be guaranteed. However, analyzing delta-ISS demands detailed knowledge of system dynamics to assess the state's incremental response to input changes, posing a challenge in real-world scenarios where mathematical models are unknown. In this work, we develop a data-driven approach to design delta-ISS Lyapunov functions together with their corresponding delta-ISS controllers for continuous-time input-affine nonlinear systems with polynomial dynamics, ensuring the delta-ISS property is achieved without requiring knowledge of the system dynamics. In our data-driven scheme, we collect only two sets of input-state trajectories from sufficiently excited dynamics, as introduced by Willems et al.'s fundamental lemma. By fulfilling a specific rank condition, we design delta-ISS controllers using the collected samples through formulating a sum-of-squares optimization program. The effectiveness of our data-driven approach is evidenced by its application on a physical case study. 
653 |a System dynamics 
653 |a Nonlinear systems 
653 |a Dynamical systems 
653 |a Nonlinear control 
653 |a Liapunov functions 
653 |a Design optimization 
653 |a Controllers 
653 |a Nonlinear dynamics 
653 |a Polynomials 
700 1 |a Angeli, David 
700 1 |a Lavaei, Abolfazl 
773 0 |t arXiv.org  |g (Dec 5, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141682444/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.03901