Cell Type Differentiation Using Network Clustering Algorithms

Sparad:
Bibliografiska uppgifter
I publikationen:bioRxiv (Dec 7, 2024)
Huvudupphov: Fatemeh Sadat Fatemi Nasrollahi
Övriga upphov: Filipi Nascimento Silva, Liu, Shiwei, Chaudhuri, Soumilee, Yu, Meichen, Wang, Juexin, Nho, Kwangsik, Saykin, Andrew J, Bennett, David A, Sporns, Olaf, Fortunato, Santo
Utgiven:
Cold Spring Harbor Laboratory Press
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3141971908
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.12.04.626793  |2 doi 
035 |a 3141971908 
045 0 |b d20241207 
100 1 |a Fatemeh Sadat Fatemi Nasrollahi 
245 1 |a Cell Type Differentiation Using Network Clustering Algorithms 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 7, 2024 
513 |a Working Paper 
520 3 |a Single cell RNA-seq (scRNA-seq) technologies provide unprecedented resolution representing transcriptomics at the level of single cell. One of the biggest challenges in scRNA-seq data analysis is the cell type annotation, which is usually inferred by cell separation approaches. In-silico algorithms that accurately identify individual cell types in ongoing single-cell sequencing studies are crucial for unlocking cellular heterogeneity and understanding the biological basis of diseases. In this study, we focus on robustly identifying cell types in single-cell RNA sequencing data; we conduct a comparative analysis using methods established in biology, like Seurat, Leiden, and WGCNA, as well as Infomap, statistical inference via Stochastic Block Models (SBM), and single-cell Graph Neural Networks (scGNN). We also analyze preprocessing pipelines to identify and optimize key components in the process. Leveraging two independent datasets, PBMC and ROSMAP, we employ clustering algorithms on cell-cell networks derived from gene expression data. Our findings reveal that while clusters detected by WGCNA exhibit limited correspondence with cell types, those identified by multiresolution Infomap and Leiden, and SBM show a closer alignment, with Infomap standing out as a particularly effective approach. Infomap notably offers valuable insights for the precise characterization of cellular landscapes related to neurodegenration and immunology in scRNA-seq.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Data processing 
653 |a Comparative analysis 
653 |a Cell differentiation 
653 |a Gene expression 
653 |a Transcriptomics 
653 |a Algorithms 
653 |a Peripheral blood mononuclear cells 
653 |a Cell culture 
653 |a Statistical models 
653 |a Neural networks 
700 1 |a Filipi Nascimento Silva 
700 1 |a Liu, Shiwei 
700 1 |a Chaudhuri, Soumilee 
700 1 |a Yu, Meichen 
700 1 |a Wang, Juexin 
700 1 |a Nho, Kwangsik 
700 1 |a Saykin, Andrew J 
700 1 |a Bennett, David A 
700 1 |a Sporns, Olaf 
700 1 |a Fortunato, Santo 
773 0 |t bioRxiv  |g (Dec 7, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3141971908/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3141971908/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.12.04.626793v1