On Interpreting the Effectiveness of Unsupervised Software Traceability with Information Theory

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Dec 6, 2024), p. n/a
Kaituhi matua: Palacio, David N
Ētahi atu kaituhi: Rodriguez-Cardenas, Daniel, Poshyvanyk, Denys, Moran, Kevin
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3142374882
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142374882 
045 0 |b d20241206 
100 1 |a Palacio, David N 
245 1 |a On Interpreting the Effectiveness of Unsupervised Software Traceability with Information Theory 
260 |b Cornell University Library, arXiv.org  |c Dec 6, 2024 
513 |a Working Paper 
520 3 |a Traceability is a cornerstone of modern software development, ensuring system reliability and facilitating software maintenance. While unsupervised techniques leveraging Information Retrieval (IR) and Machine Learning (ML) methods have been widely used for predicting trace links, their effectiveness remains underexplored. In particular, these techniques often assume traceability patterns are present within textual data - a premise that may not hold universally. Moreover, standard evaluation metrics such as precision, recall, accuracy, or F1 measure can misrepresent the model performance when underlying data distributions are not properly analyzed. Given that automated traceability techniques tend to struggle to establish links, we need further insight into the information limits related to traceability artifacts. In this paper, we propose an approach, TraceXplainer, for using information theory metrics to evaluate and better understand the performance (limits) of unsupervised traceability techniques. Specifically, we introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links. Through a comprehensive replication and analysis of well-studied datasets and techniques, we investigate the effectiveness of unsupervised techniques that predict traceability links using IR/ML. This application of TraceXplainer illustrates an imbalance in typical traceability datasets where the source code has on average 1.48 more information bits (i.e., entropy) than the linked documentation. Additionally, we demonstrate that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques. We hope these findings spur additional research on understanding the limits and progress of traceability research. 
653 |a Software 
653 |a Datasets 
653 |a Source code 
653 |a System reliability 
653 |a Performance evaluation 
653 |a Information retrieval 
653 |a Effectiveness 
653 |a Software reliability 
653 |a Debugging 
653 |a Entropy (Information theory) 
653 |a Links 
653 |a Software engineering 
653 |a Information theory 
653 |a Machine learning 
653 |a Software development 
653 |a Predictive maintenance 
700 1 |a Rodriguez-Cardenas, Daniel 
700 1 |a Poshyvanyk, Denys 
700 1 |a Moran, Kevin 
773 0 |t arXiv.org  |g (Dec 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142374882/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.04704