H-FedSN: Personalized Sparse Networks for Efficient and Accurate Hierarchical Federated Learning for IoT Applications

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 9, 2024), p. n/a
Autor principal: Gao, Jiechao
Altres autors: Li, Yuangang, Zhao, Yue, Campbell, Brad
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3142727152
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142727152 
045 0 |b d20241209 
100 1 |a Gao, Jiechao 
245 1 |a H-FedSN: Personalized Sparse Networks for Efficient and Accurate Hierarchical Federated Learning for IoT Applications 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a The proliferation of Internet of Things (IoT) has increased interest in federated learning (FL) for privacy-preserving distributed data utilization. However, traditional two-tier FL architectures inadequately adapt to multi-tier IoT environments. While Hierarchical Federated Learning (HFL) improves practicality in multi-tier IoT environments by multi-layer aggregation, it still faces challenges in communication efficiency and accuracy due to high data transfer volumes, data heterogeneity, and imbalanced device distribution, struggling to meet the low-latency and high-accuracy model training requirements of practical IoT scenarios. To overcome these limitations, we propose H-FedSN, an innovative approach for practical IoT environments. H-FedSN introduces a binary mask mechanism with shared and personalized layers to reduce communication overhead by creating a sparse network while keeping original weights frozen. To address data heterogeneity and imbalanced device distribution, we integrate personalized layers for local data adaptation and apply Bayesian aggregation with cumulative Beta distribution updates at edge and cloud levels, effectively balancing contributions from diverse client groups. Evaluations on three real-world IoT datasets and MNIST under non-IID settings demonstrate that H-FedSN significantly reduces communication costs by 58 to 238 times compared to HierFAVG while achieving high accuracy, making it highly effective for practical IoT applications in hierarchical federated learning scenarios. 
653 |a Data transfer (computers) 
653 |a Accuracy 
653 |a Internet of Things 
653 |a Multilayers 
653 |a Federated learning 
653 |a Communication 
653 |a Probability distribution functions 
653 |a Customization 
653 |a Heterogeneity 
653 |a Network latency 
700 1 |a Li, Yuangang 
700 1 |a Zhao, Yue 
700 1 |a Campbell, Brad 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142727152/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06210