Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 9, 2024), p. n/a
Autor principal: Cherepanov, Egor
Outros Autores: Kachaev, Nikita, Zholus, Artem, Kovalev, Alexey K, Panov, Aleksandr I
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3142727660
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142727660 
045 0 |b d20241209 
100 1 |a Cherepanov, Egor 
245 1 |a Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to. 
653 |a Memory tasks 
653 |a Methodology 
653 |a Memory 
653 |a Task complexity 
700 1 |a Kachaev, Nikita 
700 1 |a Zholus, Artem 
700 1 |a Kovalev, Alexey K 
700 1 |a Panov, Aleksandr I 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142727660/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06531