A Two-Stage AI-Powered Motif Mining Method for Efficient Power System Topological Analysis

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 8, 2024), p. n/a
Autor Principal: Li, Yiyan
Outros autores: Zhou, Zhenghao, Ping, Jian, Xu, Xiaoyuan, Zheng, Yan, Wu, Jianzhong
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3142728008
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142728008 
045 0 |b d20241208 
100 1 |a Li, Yiyan 
245 1 |a A Two-Stage AI-Powered Motif Mining Method for Efficient Power System Topological Analysis 
260 |b Cornell University Library, arXiv.org  |c Dec 8, 2024 
513 |a Working Paper 
520 3 |a Graph motif, defined as the microstructure that appears repeatedly in a large graph, reveals important topological characteristics of the large graph and has gained increasing attention in power system analysis regarding reliability, vulnerability and resiliency. However, searching motifs within the large-scale power system is extremely computationally challenging and even infeasible, which undermines the value of motif analysis in practice. In this paper, we introduce a two-stage AI-powered motif mining method to enable efficient and wide-range motif analysis in power systems. In the first stage, a representation learning method with specially designed network structure and loss function is proposed to achieve ordered embedding for the power system topology, simplifying the subgraph isomorphic problem into a vector comparison problem. In the second stage, under the guidance of the ordered embedding space, a greedy-search-based motif growing algorithm is introduced to quickly obtain the motifs without traversal searching. A case study based on a power system database including 61 circuit models demonstrates the effectiveness of the proposed method. 
653 |a Search algorithms 
653 |a Systems analysis 
653 |a Machine learning 
653 |a Graph theory 
653 |a Reliability 
653 |a Embedding 
653 |a Greedy algorithms 
653 |a Topology 
700 1 |a Zhou, Zhenghao 
700 1 |a Ping, Jian 
700 1 |a Xu, Xiaoyuan 
700 1 |a Zheng, Yan 
700 1 |a Wu, Jianzhong 
773 0 |t arXiv.org  |g (Dec 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142728008/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.05957