Beyond pip install: Evaluating LLM Agents for the Automated Installation of Python Projects

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 9, 2024), p. n/a
Hlavní autor: Milliken, Louis
Další autoři: Kang, Sungmin, Yoo, Shin
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3142730773
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142730773 
045 0 |b d20241209 
100 1 |a Milliken, Louis 
245 1 |a Beyond pip install: Evaluating LLM Agents for the Automated Installation of Python Projects 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a Many works have recently proposed the use of Large Language Model (LLM) based agents for performing `repository level' tasks, loosely defined as a set of tasks whose scopes are greater than a single file. This has led to speculation that the orchestration of these repository-level tasks could lead to software engineering agents capable of performing almost independently of human intervention. However, of the suite of tasks that would need to be performed by this autonomous software engineering agent, we argue that one important task is missing, which is to fulfil project level dependency by installing other repositories. To investigate the feasibility of this repository level installation task, we introduce a benchmark of of repository installation tasks curated from 40 open source Python projects, which includes a ground truth installation process for each target repository. Further, we propose Installamatic, an agent which aims to perform and verify the installation of a given repository by searching for relevant instructions from documentation in the repository. Empirical experiments reveal that that 55% of the studied repositories can be automatically installed by our agent at least one out of ten times. Through further analysis, we identify the common causes for our agent's inability to install a repository, discuss the challenges faced in the design and implementation of such an agent and consider the implications that such an agent could have for developers. 
653 |a Repositories 
653 |a Python 
653 |a Large language models 
653 |a Software engineering 
653 |a Project feasibility 
653 |a Human performance 
700 1 |a Kang, Sungmin 
700 1 |a Yoo, Shin 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142730773/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06294