Deep Reinforcement Learning-Based Resource Allocation for Hybrid Bit and Generative Semantic Communications in Space-Air-Ground Integrated Networks

Guardado en:
书目详细资料
发表在:arXiv.org (Dec 7, 2024), p. n/a
主要作者: Huang, Chong
其他作者: Chen, Xuyang, Chen, Gaojie, Xiao, Pei, Geoffrey Ye Li, Huang, Wei
出版:
Cornell University Library, arXiv.org
主题:
在线阅读:Citation/Abstract
Full text outside of ProQuest
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3142733959
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3142733959 
045 0 |b d20241207 
100 1 |a Huang, Chong 
245 1 |a Deep Reinforcement Learning-Based Resource Allocation for Hybrid Bit and Generative Semantic Communications in Space-Air-Ground Integrated Networks 
260 |b Cornell University Library, arXiv.org  |c Dec 7, 2024 
513 |a Working Paper 
520 3 |a In this paper, we introduce a novel framework consisting of hybrid bit-level and generative semantic communications for efficient downlink image transmission within space-air-ground integrated networks (SAGINs). The proposed model comprises multiple low Earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs), and ground users. Considering the limitations in signal coverage and receiver antennas that make the direct communication between satellites and ground users unfeasible in many scenarios, thus UAVs serve as relays and forward images from satellites to the ground users. Our hybrid communication framework effectively combines bit-level transmission with several semantic-level image generation modes, optimizing bandwidth usage to meet stringent satellite link budget constraints and ensure communication reliability and low latency under low signal-to-noise ratio (SNR) conditions. To reduce the transmission delay while ensuring the reconstruction quality at the ground user, we propose a novel metric for measuring delay and reconstruction quality in the proposed system, and employ a deep reinforcement learning (DRL)-based strategy to optimize the resource in the proposed network. Simulation results demonstrate the superiority of the proposed framework in terms of communication resource conservation, reduced latency, and maintaining high image quality, significantly outperforming traditional solutions. Therefore, the proposed framework can ensure that real-time image transmission requirements in SAGINs, even under dynamic network conditions and user demand. 
653 |a Semantics 
653 |a Resource conservation 
653 |a Deep learning 
653 |a Signal generation 
653 |a Image reconstruction 
653 |a Communication 
653 |a Unmanned aerial vehicles 
653 |a Satellite communications 
653 |a Satellite imagery 
653 |a Optimization 
653 |a Resource allocation 
653 |a Network latency 
653 |a Image transmission 
653 |a Image quality 
653 |a Real time 
653 |a Satellites 
653 |a Image processing 
653 |a Low earth orbits 
653 |a Signal to noise ratio 
700 1 |a Chen, Xuyang 
700 1 |a Chen, Gaojie 
700 1 |a Xiao, Pei 
700 1 |a Geoffrey Ye Li 
700 1 |a Huang, Wei 
773 0 |t arXiv.org  |g (Dec 7, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3142733959/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.05647