VOPy: A Framework for Black-box Vector Optimization
Uloženo v:
| Vydáno v: | arXiv.org (Dec 9, 2024), p. n/a |
|---|---|
| Hlavní autor: | |
| Další autoři: | , , , |
| Vydáno: |
Cornell University Library, arXiv.org
|
| Témata: | |
| On-line přístup: | Citation/Abstract Full text outside of ProQuest |
| Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstrakt: | We introduce VOPy, an open-source Python library designed to address black-box vector optimization, where multiple objectives must be optimized simultaneously with respect to a partial order induced by a convex cone. VOPy extends beyond traditional multi-objective optimization (MOO) tools by enabling flexible, cone-based ordering of solutions; with an application scope that includes environments with observation noise, discrete or continuous design spaces, limited budgets, and batch observations. VOPy provides a modular architecture, facilitating the integration of existing methods and the development of novel algorithms. We detail VOPy's architecture, usage, and potential to advance research and application in the field of vector optimization. The source code for VOPy is available at https://github.com/Bilkent-CYBORG/VOPy. |
|---|---|
| ISSN: | 2331-8422 |
| Zdroj: | Engineering Database |