Analysing Public Transport User Sentiment on Low Resource Multilingual Data

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 9, 2024), p. n/a
المؤلف الرئيسي: Myoya, Rozina L
مؤلفون آخرون: Marivate, Vukosi, Idris Abdulmumin
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3143052562
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143052562 
045 0 |b d20241209 
100 1 |a Myoya, Rozina L 
245 1 |a Analysing Public Transport User Sentiment on Low Resource Multilingual Data 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a Public transport systems in many Sub-Saharan countries often receive less attention compared to other sectors, underscoring the need for innovative solutions to improve the Quality of Service (QoS) and overall user experience. This study explored commuter opinion mining to understand sentiments toward existing public transport systems in Kenya, Tanzania, and South Africa. We used a qualitative research design, analysing data from X (formerly Twitter) to assess sentiments across rail, mini-bus taxis, and buses. By leveraging Multilingual Opinion Mining techniques, we addressed the linguistic diversity and code-switching present in our dataset, thus demonstrating the application of Natural Language Processing (NLP) in extracting insights from under-resourced languages. We employed PLMs such as AfriBERTa, AfroXLMR, AfroLM, and PuoBERTa to conduct the sentiment analysis. The results revealed predominantly negative sentiments in South Africa and Kenya, while the Tanzanian dataset showed mainly positive sentiments due to the advertising nature of the tweets. Furthermore, feature extraction using the Word2Vec model and K-Means clustering illuminated semantic relationships and primary themes found within the different datasets. By prioritising the analysis of user experiences and sentiments, this research paves the way for developing more responsive, user-centered public transport systems in Sub-Saharan countries, contributing to the broader goal of improving urban mobility and sustainability. 
651 4 |a South Africa 
651 4 |a Kenya 
653 |a Data analysis 
653 |a Qualitative analysis 
653 |a Datasets 
653 |a Public transportation 
653 |a Minibuses 
653 |a Cluster analysis 
653 |a Sentiment analysis 
653 |a Clustering 
653 |a Transportation systems 
653 |a User experience 
653 |a Multilingualism 
653 |a Natural language processing 
653 |a Qualitative research 
653 |a Vector quantization 
700 1 |a Marivate, Vukosi 
700 1 |a Idris Abdulmumin 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143052562/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06951