Timely reliable Bayesian decision-making enabled using memristors

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 7, 2024), p. n/a
Egile nagusia: Song, Lekai
Beste egile batzuk: Liu, Pengyu, Liu, Yang, Pei, Jingfang, Cui, Wenyu, Liu, Songwei, Wen, Yingyi, Teng, Ma, Kong-Pang Pun, Hu, Guohua
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3143054336
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143054336 
045 0 |b d20241207 
100 1 |a Song, Lekai 
245 1 |a Timely reliable Bayesian decision-making enabled using memristors 
260 |b Cornell University Library, arXiv.org  |c Dec 7, 2024 
513 |a Working Paper 
520 3 |a Brains perform timely reliable decision-making by Bayes theorem. Bayes theorem quantifies events as probabilities and, through probability rules, renders the decisions. Learning from this, applying Bayes theorem in practical problems can visualize the potential risks and decision confidence, thereby enabling efficient user-scene interactions. However, given the probabilistic nature, implementing Bayes theorem with the conventional deterministic computing can inevitably induce excessive computational cost and decision latency. Herein, we propose a probabilistic computing approach using memristors to implement Bayes theorem. We integrate volatile memristors with Boolean logics and, by exploiting the volatile stochastic switching of the memristors, realize Boolean operations with statistical probabilities and correlations, key for enabling Bayes theorem. To practically demonstrate the effectiveness of our memristor-enabled Bayes theorem approach in user-scene interactions, we design lightweight Bayesian inference and fusion operators using our probabilistic logics and apply the operators in road scene parsing for self-driving, including route planning and obstacle detection. The results show that our operators can achieve reliable decisions at a rate over 2,500 frames per second, outperforming human decision-making and the existing driving assistance systems. 
653 |a Advanced driver assistance systems 
653 |a Bayesian analysis 
653 |a Probabilistic inference 
653 |a Boolean 
653 |a Route planning 
653 |a Frames per second 
653 |a Decision making 
653 |a Computing costs 
653 |a Probability theory 
653 |a Operators 
653 |a Bayes Theorem 
653 |a Statistical analysis 
653 |a Statistical inference 
653 |a Memristors 
653 |a Obstacle avoidance 
700 1 |a Liu, Pengyu 
700 1 |a Liu, Yang 
700 1 |a Pei, Jingfang 
700 1 |a Cui, Wenyu 
700 1 |a Liu, Songwei 
700 1 |a Wen, Yingyi 
700 1 |a Teng, Ma 
700 1 |a Kong-Pang Pun 
700 1 |a Hu, Guohua 
773 0 |t arXiv.org  |g (Dec 7, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143054336/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06838