MPSI: Mamba enhancement model for pixel-wise sequential interaction Image Super-Resolution

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 10, 2024), p. n/a
Hlavní autor: He, Yuchun
Další autoři: He, Yuhan
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3143054416
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143054416 
045 0 |b d20241210 
100 1 |a He, Yuchun 
245 1 |a MPSI: Mamba enhancement model for pixel-wise sequential interaction Image Super-Resolution 
260 |b Cornell University Library, arXiv.org  |c Dec 10, 2024 
513 |a Working Paper 
520 3 |a Single image super-resolution (SR) has long posed a challenge in the field of computer vision. While the advent of deep learning has led to the emergence of numerous methods aimed at tackling this persistent issue, the current methodologies still encounter challenges in modeling long sequence information, leading to limitations in effectively capturing the global pixel interactions. To tackle this challenge and achieve superior SR outcomes, we propose the Mamba pixel-wise sequential interaction network (MPSI), aimed at enhancing the establishment of long-range connections of information, particularly focusing on pixel-wise sequential interaction. We propose the Channel-Mamba Block (CMB) to capture comprehensive pixel interaction information by effectively modeling long sequence information. Moreover, in the existing SR methodologies, there persists the issue of the neglect of features extracted by preceding layers, leading to the loss of valuable feature information. While certain existing models strive to preserve these features, they frequently encounter difficulty in establishing connections across all layers. To overcome this limitation, MPSI introduces the Mamba channel recursion module (MCRM), which maximizes the retention of valuable feature information from early layers, thereby facilitating the acquisition of pixel sequence interaction information from multiple-level layers. Through extensive experimentation, we demonstrate that MPSI outperforms existing super-resolution methods in terms of image reconstruction results, attaining state-of-the-art performance. 
653 |a Feature extraction 
653 |a Image acquisition 
653 |a Computer vision 
653 |a Pixels 
653 |a Image resolution 
653 |a Image reconstruction 
653 |a Modelling 
700 1 |a He, Yuhan 
773 0 |t arXiv.org  |g (Dec 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143054416/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.07222