APS-LSTM: Exploiting Multi-Periodicity and Diverse Spatial Dependencies for Flood Forecasting

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Dec 7, 2024), p. n/a
Autor principal: Feng, Jun
Outros Autores: Liu, Xueyi, Lu, Jiamin, Shao, Pingping
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3143054461
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143054461 
045 0 |b d20241207 
100 1 |a Feng, Jun 
245 1 |a APS-LSTM: Exploiting Multi-Periodicity and Diverse Spatial Dependencies for Flood Forecasting 
260 |b Cornell University Library, arXiv.org  |c Dec 7, 2024 
513 |a Working Paper 
520 3 |a Accurate flood prediction is crucial for disaster prevention and mitigation. Hydrological data exhibit highly nonlinear temporal patterns and encompass complex spatial relationships between rainfall and flow. Existing flood prediction models struggle to capture these intricate temporal features and spatial dependencies. This paper presents an adaptive periodic and spatial self-attention method based on LSTM (APS-LSTM) to address these challenges. The APS-LSTM learns temporal features from a multi-periodicity perspective and captures diverse spatial dependencies from different period divisions. The APS-LSTM consists of three main stages, (i) Multi-Period Division, that utilizes Fast Fourier Transform (FFT) to divide various periodic patterns; (ii) Spatio-Temporal Information Extraction, that performs periodic and spatial self-attention focusing on intra- and inter-periodic temporal patterns and spatial dependencies; (iii) Adaptive Aggregation, that relies on amplitude strength to aggregate the computational results from each periodic division. The abundant experiments on two real-world datasets demonstrate the superiority of APS-LSTM. The code is available: https://github.com/oopcmd/APS-LSTM. 
653 |a Hydrologic data 
653 |a Flood forecasting 
653 |a Fourier transforms 
653 |a Prediction models 
653 |a Information retrieval 
653 |a Rainfall 
653 |a Fast Fourier transformations 
653 |a Spatial dependencies 
653 |a Flood predictions 
700 1 |a Liu, Xueyi 
700 1 |a Lu, Jiamin 
700 1 |a Shao, Pingping 
773 0 |t arXiv.org  |g (Dec 7, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143054461/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.06835