Marigold: A machine learning-based web app for zebrafish pose tracking

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv (Dec 11, 2024)
1. Verfasser: Teicher, Gregory
Weitere Verfasser: R Madison Riffe, Barnaby, Wayne, Martin, Gabrielle, Clayton, Benjamin E, Trapani, Josef G, Downes, Gerald B
Veröffentlicht:
Cold Spring Harbor Laboratory Press
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3143057088
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.05.31.596910  |2 doi 
035 |a 3143057088 
045 0 |b d20241211 
100 1 |a Teicher, Gregory 
245 1 |a Marigold: A machine learning-based web app for zebrafish pose tracking 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise. Here, we introduce Marigold, a free and open source web app for high-throughput behavioral analysis of embryonic and larval zebrafish. Marigold features an intuitive graphical user interface (GUI), tracks up to 10 user-defined keypoints, supports both single- and multiwell formats, and exports a range of kinematic parameters in addition to publication-quality data visualizations. By leveraging a highly efficient, custom-designed neural network architecture, Marigold achieves reasonable training and inference speeds even on modestly powered computers lacking a discrete graphics processing unit (GPU). Notably, as a web app, Marigold does not require any installation and runs within popular web browsers on ChromeOS, Linux, macOS, and Windows. To demonstrate Marigold's utility, we conducted two sets of biological experiments. First, we examined novel aspects of the touch-evoked escape response in techno trousers (tnt) mutant embryos, which contain a previously described loss-of-function mutation in the gene encoding Eaat2b, a glial glutamate transporter. We identified differences and interactions between touch location (head vs. tail) and genotype. Second, we investigated the effects of feeding on larval visuomotor behavior at 5 and 7 days post-fertilization (dpf). We found differences in the number and vigor of swimming bouts between fed and unfed fish at both time points, as well as interactions between developmental stage and feeding regimen. In both biological experiments presented here, the use of Marigold facilitated novel behavioral findings. Marigold's ease of use, robust pose tracking, amenability to diverse experimental paradigms, and flexibility regarding hardware requirements make it a powerful tool for analyzing zebrafish behavior, especially in low-resource settings such as course-based undergraduate research experiences (CUREs). Marigold is available at: https://downeslab.github.io/marigold/.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Neural network experiments and corresponding figures updated and expanded for fairer and more thorough comparisons; text updated and revised to improve clarity, brevity, and organization.* https://downeslab.github.io/marigold/* https://github.com/downeslab/marigold 
653 |a Embryos 
653 |a Behavior 
653 |a Software 
653 |a Sensorimotor integration 
653 |a Zebrafish 
653 |a Autism 
653 |a Feeding behavior 
653 |a Neurological diseases 
653 |a Neural networks 
653 |a Fertilization 
653 |a Toxicity testing 
653 |a Glutamic acid transporter 
653 |a Information processing 
653 |a Computers 
653 |a Genotypes 
653 |a Oculomotor behavior 
653 |a Nervous system 
653 |a Epilepsy 
653 |a Developmental stages 
653 |a Danio rerio 
700 1 |a R Madison Riffe 
700 1 |a Barnaby, Wayne 
700 1 |a Martin, Gabrielle 
700 1 |a Clayton, Benjamin E 
700 1 |a Trapani, Josef G 
700 1 |a Downes, Gerald B 
773 0 |t bioRxiv  |g (Dec 11, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143057088/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.05.31.596910v2