Hamiltonian simulation-based quantum-selected configuration interaction for large-scale electronic structure calculations with a quantum computer

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:arXiv.org (Dec 10, 2024), p. n/a
Κύριος συγγραφέας: Sugisaki, Kenji
Άλλοι συγγραφείς: Kanno, Shu, Itoko, Toshinari, Sakuma, Rei, Yamamoto, Naoki
Έκδοση:
Cornell University Library, arXiv.org
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full text outside of ProQuest
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3143057144
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143057144 
045 0 |b d20241210 
100 1 |a Sugisaki, Kenji 
245 1 |a Hamiltonian simulation-based quantum-selected configuration interaction for large-scale electronic structure calculations with a quantum computer 
260 |b Cornell University Library, arXiv.org  |c Dec 10, 2024 
513 |a Working Paper 
520 3 |a Quantum-selected configuration interaction (QSCI) is one of the most promising approaches for quantum chemical calculations with the current pre-fault tolerant quantum computers. In the conventional QSCI, the Slater determinants used for the wave function expansion are sampled by iteratively performing approximate wave function preparation and subsequent measurement in the computational basis, and then the subspace Hamiltonian matrix is diagonalized on a classical computer. In this approach, the preparation of a high-quality approximate wave function is necessary to compute total energies accurately. In this work, we propose a Hamiltonian simulation-based QSCI (HSB-QSCI) to avoid this difficulty. In the HSB-QSCI, the Slater determinants are sampled from quantum states generated by the real-time evolution of approximate wave functions. We provide numerical simulations for the spin-singlet ground state and the first excited spin-triplet state of oligoacenes (benzene, naphthalene, and anthracene), phenylene-1,4-dinitrene, and hexa-1,2,3,4,5-pentaene molecules; these results reveal that the HSB-QSCI is applicable not only to molecules where the Hartree--Fock provides a good approximation of the ground state, but also to strongly correlated systems with multiconfigurational characteristics (i.e., the case where preparing a high-quality approximate wave function is hard). We have also numerically confirmed that the HSB-QSCI is robust to approximation errors of the Hamiltonian simulation, such as Trotter errors and the truncation errors of Hamiltonian term by maximum locality in the localized molecular orbital basis. Hardware demonstrations of the HSB-QSCI are also reported for the hexa-1,2,3,4,5-pentaene molecule using 20 qubits IBM superconducting device. The differences between the HSB-QSCI energy and the CAS-CI value are at most 0.15 kcal mol\(^{-1}\), achieving chemical precision. 
653 |a Simulation 
653 |a Molecular orbitals 
653 |a Truncation errors 
653 |a Atomic energy levels 
653 |a Mathematical analysis 
653 |a Quantum computers 
653 |a Benzene 
653 |a Configuration interaction 
653 |a Fault tolerance 
653 |a Quantum chemistry 
653 |a Approximation 
653 |a Ground state 
653 |a Real time 
653 |a Naphthalene 
653 |a Electronic structure 
653 |a Wave functions 
653 |a Anthracene 
653 |a Qubits (quantum computing) 
653 |a Hamiltonian functions 
700 1 |a Kanno, Shu 
700 1 |a Itoko, Toshinari 
700 1 |a Sakuma, Rei 
700 1 |a Yamamoto, Naoki 
773 0 |t arXiv.org  |g (Dec 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143057144/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.07218