Analytical-Heuristic Modeling and Optimization for Low-Light Image Enhancement

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 10, 2024), p. n/a
1. Verfasser: Martinez, Axel
Weitere Verfasser: Hernandez, Emilio, Olague, Matthieu, Olague, Gustavo
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3143057336
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143057336 
045 0 |b d20241210 
100 1 |a Martinez, Axel 
245 1 |a Analytical-Heuristic Modeling and Optimization for Low-Light Image Enhancement 
260 |b Cornell University Library, arXiv.org  |c Dec 10, 2024 
513 |a Working Paper 
520 3 |a Low-light image enhancement remains an open problem, and the new wave of artificial intelligence is at the center of this problem. This work describes the use of genetic algorithms for optimizing analytical models that can improve the visualization of images with poor light. Genetic algorithms are part of metaheuristic approaches, which proved helpful in solving challenging optimization tasks. We propose two analytical methods combined with optimization reasoning to approach a solution to the physical and computational aspects of transforming dark images into visible ones. The experiments demonstrate that the proposed approach ranks at the top among 26 state-of-the-art algorithms in the LOL benchmark. The results show evidence that a simple genetic algorithm combined with analytical reasoning can defeat the current mainstream in a challenging computer vision task through controlled experiments and objective comparisons. This work opens interesting new research avenues for the swarm and evolutionary computation community and others interested in analytical and heuristic reasoning. 
653 |a Heuristic 
653 |a Evolutionary computation 
653 |a Computer vision 
653 |a Genetic algorithms 
653 |a Image enhancement 
653 |a Artificial intelligence 
653 |a Optimization 
653 |a Evolutionary algorithms 
653 |a Heuristic methods 
653 |a Reasoning 
700 1 |a Hernandez, Emilio 
700 1 |a Olague, Matthieu 
700 1 |a Olague, Gustavo 
773 0 |t arXiv.org  |g (Dec 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143057336/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.07659