FastDDS-Based Middleware System for Remote X-Ray Image Classification Using Raspberry Pi

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 10, 2024), p. n/a
Hovedforfatter: Khater, Omar H
Andre forfattere: Almadani, Basem, Aliyu, Farouq
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
Beskrivelse
Resumen:Internet of Things (IoT) based healthcare systems offer significant potential for improving the delivery of healthcare services in humanitarian engineering, providing essential healthcare services to millions of underserved people in remote areas worldwide. However, these areas have poor network infrastructure, making communications difficult for traditional IoT. This paper presents a real-time chest X-ray classification system for hospitals in remote areas using FastDDS real-time middleware, offering reliable real-time communication. We fine-tuned a ResNet50 neural network to an accuracy of 88.61%, a precision of 88.76%, and a recall of 88.49\%. Our system results mark an average throughput of 3.2 KB/s and an average latency of 65 ms. The proposed system demonstrates how middleware-based systems can assist doctors in remote locations.
ISSN:2331-8422
Fuente:Engineering Database