Federated Learning for Traffic Flow Prediction with Synthetic Data Augmentation

Guardado en:
书目详细资料
发表在:arXiv.org (Dec 11, 2024), p. n/a
主要作者: Orozco, Fermin
其他作者: Pedro Porto Buarque de Gusmão, Wen, Hongkai, Wahlström, Johan, Luo, Man
出版:
Cornell University Library, arXiv.org
主题:
在线阅读:Citation/Abstract
Full text outside of ProQuest
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3143450909
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143450909 
045 0 |b d20241211 
100 1 |a Orozco, Fermin 
245 1 |a Federated Learning for Traffic Flow Prediction with Synthetic Data Augmentation 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a Deep-learning based traffic prediction models require vast amounts of data to learn embedded spatial and temporal dependencies. The inherent privacy and commercial sensitivity of such data has encouraged a shift towards decentralised data-driven methods, such as Federated Learning (FL). Under a traditional Machine Learning paradigm, traffic flow prediction models can capture spatial and temporal relationships within centralised data. In reality, traffic data is likely distributed across separate data silos owned by multiple stakeholders. In this work, a cross-silo FL setting is motivated to facilitate stakeholder collaboration for optimal traffic flow prediction applications. This work introduces an FL framework, referred to as FedTPS, to generate synthetic data to augment each client's local dataset by training a diffusion-based trajectory generation model through FL. The proposed framework is evaluated on a large-scale real world ride-sharing dataset using various FL methods and Traffic Flow Prediction models, including a novel prediction model we introduce, which leverages Temporal and Graph Attention mechanisms to learn the Spatio-Temporal dependencies embedded within regional traffic flow data. Experimental results show that FedTPS outperforms multiple other FL baselines with respect to global model performance. 
653 |a Traffic flow 
653 |a Datasets 
653 |a Data augmentation 
653 |a Deep learning 
653 |a Machine learning 
653 |a Federated learning 
653 |a Prediction models 
653 |a Spatiotemporal data 
653 |a Synthetic data 
700 1 |a Pedro Porto Buarque de Gusmão 
700 1 |a Wen, Hongkai 
700 1 |a Wahlström, Johan 
700 1 |a Luo, Man 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143450909/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.08460