FuzzDistill: Intelligent Fuzzing Target Selection using Compile-Time Analysis and Machine Learning
Сохранить в:
| Опубликовано в:: | arXiv.org (Dec 11, 2024), p. n/a |
|---|---|
| Главный автор: | |
| Опубликовано: |
Cornell University Library, arXiv.org
|
| Предметы: | |
| Online-ссылка: | Citation/Abstract Full text outside of ProQuest |
| Метки: |
Нет меток, Требуется 1-ая метка записи!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3143450942 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2331-8422 | ||
| 035 | |a 3143450942 | ||
| 045 | 0 | |b d20241211 | |
| 100 | 1 | |a Upadhyay, Saket | |
| 245 | 1 | |a FuzzDistill: Intelligent Fuzzing Target Selection using Compile-Time Analysis and Machine Learning | |
| 260 | |b Cornell University Library, arXiv.org |c Dec 11, 2024 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Fuzz testing is a fundamental technique employed to identify vulnerabilities within software systems. However, the process can be protracted and resource-intensive, especially when confronted with extensive codebases. In this work, I present FuzzDistill, an approach that harnesses compile-time data and machine learning to refine fuzzing targets. By analyzing compile-time information, such as function call graphs' features, loop information, and memory operations, FuzzDistill identifies high-priority areas of the codebase that are more probable to contain vulnerabilities. I demonstrate the efficacy of my approach through experiments conducted on real-world software, demonstrating substantial reductions in testing time. | |
| 653 | |a Testing time | ||
| 653 | |a Machine learning | ||
| 653 | |a Harnesses | ||
| 653 | |a Computer programming | ||
| 653 | |a Software testing | ||
| 773 | 0 | |t arXiv.org |g (Dec 11, 2024), p. n/a | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3143450942/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u http://arxiv.org/abs/2412.08100 |