Spin-glass dynamics: experiment, theory and simulation

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Dec 11, 2024), p. n/a
Kaituhi matua: Dahlberg, E D
Ētahi atu kaituhi: I González-Adalid Pemartín, Marinari, E, Martin-Mayor, V, Moreno-Gordo, J, Orbach, R L, Paga, I, Parisi, G, Ricci-Tersenghi, F, Ruiz-Lorenzo, J J, Yllanes, D
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3143451156
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3143451156 
045 0 |b d20241211 
100 1 |a Dahlberg, E D 
245 1 |a Spin-glass dynamics: experiment, theory and simulation 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a The study of spin-glass dynamics, long considered the paradigmatic complex system, has reached important milestones. The availability of high-quality single crystals has allowed the experimental measurement of spin-glass coherence lengths of almost macroscopic dimensions, while the advent of special-purpose massive computers enables dynamical simulations that approach experimental time and length scales. This review provides an account of the quantitative convergence of these two avenues of research, with precise experimental measurements of the expected scaling laws and numerical reproduction of classic experimental results, such as memory and rejuvenation. The article opens with a brief review of the defining spin-glass properties, randomness and frustration, and their experimental consequences. These apparently simple characteristics are shown to generate rich and complex physics. Models are introduced that enable quantitative descriptions. After a summary of the main numerical results in equilibrium, paying particular attention to the concept of temperature chaos, this review examines off-equilibrium dynamics in the absence of a magnetic field and shows how it can be related to equilibrium structures through the fluctuation-dissipation relations. The nonlinear response at a given temperature is then developed, including experiments and scaling in the vicinity of the transition temperature \(T_\mathrm{g}\). The consequences of temperature change -- including temperature chaos, rejuvenation, and memory -- are reviewed. The interpretation of these phenomena requires identifying several length scales relevant to dynamics, which, in turn, generate new insights. Finally, issues for future investigations are introduced, including what is to be nailed down theoretically, why the Ising Edwards-Anderson model is so successful at modeling spin-glass dynamics, and experiments yet to be undertaken. 
653 |a Nonlinear response 
653 |a Complex systems 
653 |a Ising model 
653 |a Coherence length 
653 |a Scaling laws 
653 |a Transition temperature 
653 |a Spin dynamics 
653 |a Single crystals 
653 |a Spin glasses 
653 |a Magnetic properties 
653 |a Nonlinear dynamics 
653 |a Equilibrium 
700 1 |a I González-Adalid Pemartín 
700 1 |a Marinari, E 
700 1 |a Martin-Mayor, V 
700 1 |a Moreno-Gordo, J 
700 1 |a Orbach, R L 
700 1 |a Paga, I 
700 1 |a Parisi, G 
700 1 |a Ricci-Tersenghi, F 
700 1 |a Ruiz-Lorenzo, J J 
700 1 |a Yllanes, D 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3143451156/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2412.08381